134,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

Over the past twenty years, there's been a gradual shift in the way forensic scientists approach the evaluation of DNA profiling evidence that is taken to court. Many laboratories are now adopting 'probabilistic genotyping' to interpret complex DNA mixtures. However, current practice is very diverse, where a whole range of technologies are used to interpret DNA profiles and the software approaches advocated are commonly used throughout the world. Forensic Practitioner's Guide to the Interpretation of Complex DNA Profiles places the main concepts of DNA profiling into context and fills a niche…mehr

Produktbeschreibung
Over the past twenty years, there's been a gradual shift in the way forensic scientists approach the evaluation of DNA profiling evidence that is taken to court. Many laboratories are now adopting 'probabilistic genotyping' to interpret complex DNA mixtures. However, current practice is very diverse, where a whole range of technologies are used to interpret DNA profiles and the software approaches advocated are commonly used throughout the world. Forensic Practitioner's Guide to the Interpretation of Complex DNA Profiles places the main concepts of DNA profiling into context and fills a niche that is unoccupied in current literature. The book begins with an introduction to basic forensic genetics, covering a brief historical description of the development and harmonization of STR markers and national DNA databases. The laws of statistics are described, along with the likelihood ratio based on Hardy-Weinberg equilibrium and alternative models considering sub-structuring and relatedness. The historical development of low template mixture analysis, theory and practice, is also described, so the reader has a full understanding of rationale and progression. Evaluation of evidence and statement writing is described in detail, along with common pitfalls and their avoidance. The authors have been at the forefront of the revolution, having made substantial contributions to theory and practice over the past two decades. All methods described are open-source and freely available, supported by sets of test-data and links to web-sites with further information. This book is written primarily for the biologist with little or no statistical training. However, sufficient information will also be provided for the experienced statistician. Consequently, the book appeals to a diverse audience
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Peter Gill joined the Forensic Science Service (FSS) in 1982. He began his research into DNA in 1985, collaborating with Sir Alec Jeffreys of Leicester University. In the same year they published the first demonstration of the forensic application of DNA profiling. In 1987, Dr. Gill was given an award under the civil service inventor's scheme for discovery of the preferential sperm DNA extraction technique and the development of associated forensic tests. He was employed as Senior Principal Research Scientist at the Forensic Science Service (FSS). Currently, he hold concurrent positions at Oslo University Hospital and the University of Oslo where he is Professor of Forensic Genetics. Romanovs In 1993-4, Dr. Gill was responsible for leading the team which confirmed the identity of the remains of the Romanov family, murdered in 1918, and also the subsequent investigation which disproved the claim of Anna Anderson to be the Duchess Anastasia (using tissue preserved in a paraffin wax block for several decades). This was an early example of an historical mystery that was solved by the analysis of very degraded and aged material, and was one of the first demonstrations of low-template DNA analysis. Low-template DNA In relation to the above, Dr. Gill was responsible for developing a routine casework-based 'super-sensitive' method of DNA profiling that was capable of analysing DNA profiles from a handful of cells. This method was originally known as low-copy-number (LCN) DNA profiling. Now it is known as Low template DNA profiling. New statistical methods and thinking were also developed to facilitate the new methods. National DNA database Dr. Gill was responsible for leading the team that developed the first multiplex DNA systems to be used in a National DNA database anywhere in the world, and for the design of interpretation methods that are in current use (c.1995). Court reporting: Dr. Gill has been involved with giving evidence in several high profile (controversial) cases - including the Doheny / Adams appeals, and the Omagh bombing trial in the UK. Membership of scientific societies Currently, Dr. Gill is a member of the European Network of Forensic Science Institutes and ex-chair of the 'methods, analysis and interpretation sub-section' He is chair of the International society for forensic genetics DNA commission on mixtures and has written a number of ISFG recommendations on low-template, mixture interpretation and evaluation of evidence that are highly cited. D. Gill is a member of the European DNA Profiling Group (EDNAP). He has published more than 200 papers in the international scientific literature which have been cited more than 20,000 times - many of these are collaborative papers under the auspices of ISFG, EDNAP and ENFSI. He is the recipient of the 2013 Scientific Prize of the International Society for Forensic Genetics. Affiliations and Expertise Forensic Genetics Research Group, Oslo University Hospital; Institute of Clinical Medicine, University of Oslo, Norwa