An expert guide to emission control technologies and applications, Fossil Fuels Emissions Control Technologies provides engineers with a guide to link emission control strategies to available technologies, allowing them to choose the technology that best suits their individual need. This includes reduction technologies for Nitrogen Oxides, Sulfur Oxides, Mercury and Acid Gases. In this reference, the author explains the most critical control technologies and their application to real-world regulatory compliance issues. Numerous diagrams and examples emphasizing pollution formation mechanisms,…mehr
An expert guide to emission control technologies and applications, Fossil Fuels Emissions Control Technologies provides engineers with a guide to link emission control strategies to available technologies, allowing them to choose the technology that best suits their individual need. This includes reduction technologies for Nitrogen Oxides, Sulfur Oxides, Mercury and Acid Gases. In this reference, the author explains the most critical control technologies and their application to real-world regulatory compliance issues. Numerous diagrams and examples emphasizing pollution formation mechanisms, key points in pollutant control, and design techniques are also included.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Mr. Miller (B.S. and M.S. Chemical Engineering) has more than 30 years' experience in energy research and development, combustion systems, fuels characterization, preparation and handling, hardware development and testing, and emissions characterization and control. He has been PI or co-PI of over $44 M in sponsored research. He is the author of four books published by Elsevier
Inhaltsangabe
Chapter 1: Regulations
Chapter 2: Fuel Switching
Chapter 3: Particulate Matter Formation and Reduction Technologies
Chapter 4: Sulfur Oxides Formation and Reduction Technologies
Chapter 5: Nitrogen Oxides Formation and Control
Chapter 6: Mercury Emissions Reduction
Chapter 7: Acid Gases Formation and Reduction Technologies
Chapter 8: Organic HAPs Formation and Reduction Technologies