125,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
63 °P sammeln
  • Gebundenes Buch

This volume is number four in a series of proceedings volumes from the International Symposia on Fractals in Biology and Medicine in Ascona, Switzerland. It highlights the potential that fractal geometry offers for elucidating and explaining the complex make-up of cells, tissues and biological organisms either in normal, abnormal and tumoral conditions. It discusses present and future applications of fractal geometry, bringing together cellular and molecular biology, engineering, mathematics, physics, medicine and other disciplines and allowing an interdisciplinary vision. The book should be…mehr

Produktbeschreibung
This volume is number four in a series of proceedings volumes from the International Symposia on Fractals in Biology and Medicine in Ascona, Switzerland. It highlights the potential that fractal geometry offers for elucidating and explaining the complex make-up of cells, tissues and biological organisms either in normal, abnormal and tumoral conditions. It discusses present and future applications of fractal geometry, bringing together cellular and molecular biology, engineering, mathematics, physics, medicine and other disciplines and allowing an interdisciplinary vision. The book should be of interest to researchers and students from molecular and cell biology, biomedicine, biomathematics, analytical morphology, immunology and neurology who are interested in the combination of mathematics and life sciences.
This book is a compilation of the presentations given at the Fourth International Symposium on Fractals in Biology and Medicine held in Ascona, Switzerland on - th 13 March 2004 and was dedicated to Professor Benoît Mandelbrot in honour of his 80 birthday. The Symposium was the fourth of a series that originated back in 1993, always in Ascona. The fourth volume consists of 29 contributions organized under four sections: Fractal structures in biological systems Fractal structures in neurosciences Fractal structures in tumours and diseases The fractal paradigm Mandelbrot's concepts such as scale invariance, self-similarity, irregularity and iterative processes as tackled by fractal geometry have prompted innovative ways to promote a real progress in biomedical sciences, namely by understanding and analytically describing complex hierarchical scaling processes, chaotic disordered systems, non-linear dynamic phenomena, standard and anomalous transport diffusion events through membrane surfaces, morphological structures and biological shapes either in physiological or in diseased states. While most of biologic processes could be described by models based on power law behaviour and quantified by a single characteristic parameter [the fractal dimension D], other models were devised for describing fractional time dynamics and fractional space behaviour or both (- fractional mechanisms), that allow to combine the interaction between spatial and functional effects by introducing two fractional parameters. Diverse aspects that were addressed by all bio-medical subjects discussed during the symposium.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.