Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles. These methods work by subdividing a system into subunits, called fragments or subsystems or domains. Calculations are performed on each fragment and then the results are combined to predict properties for the whole system. Topics covered include: _ Fragmentation methods _…mehr
Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles. These methods work by subdividing a system into subunits, called fragments or subsystems or domains. Calculations are performed on each fragment and then the results are combined to predict properties for the whole system.
Topics covered include: _ Fragmentation methods _ Embedding methods _ Explicitly correlated local electron correlation methods _ Fragment molecular orbital method _ Methods for treating large molecules
This book is aimed at academic researchers who are interested in computational chemistry, computational biology, computational materials science and related fields, as well as graduate students in these fields.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Edited by MARK S. GORDON, Department of Chemistry, Iowa State University, Ames, USA
Inhaltsangabe
List of Contributors xi
Preface xv
1 Explicitly Correlated Local Electron Correlation Methods 1 Hans-Joachim Werner, Christoph Koppl, Qianli Ma, and Max Schwilk
1.1 Introduction 1
1.2 Benchmark Systems 3
1.3 Orbital-Invariant MP2 Theory 6
1.4 Principles of Local Correlation 9
1.5 Orbital Localization 10
1.6 Local Virtual Orbitals 12
1.7 Choice of Domains 24
1.8 Approximations for Distant Pairs 26
1.9 Local Coupled-Cluster Methods (LCCSD) 33
1.10 Triple Excitations 41
1.11 Local Explicitly Correlated Methods 41
1.12 Technical Aspects 53
1.13 Comparison of Local Correlation and Fragment Methods 57
1.14 Summary 60
Appendix A: The LCCSD Equations 63
Appendix B: Derivation of the Interaction Matrices 65
References 67
2 Density and Potential Functional Embedding: Theory and Practice 81 Kuang Yu, Caroline M. Krauter, Johannes M. Dieterich, and Emily A. Carter
2.1 Introduction 81
2.2 Theoretical Background 82
2.3 Density Functional Embedding Theory 84
2.4 Potential Functional Embedding Theory 101
2.5 Summary and Outlook 109
Acknowledgments 111
References 111
3 Modeling and Visualization for the Fragment Molecular Orbital Method with the Graphical User Interface FU, and Analyses of Protein-Ligand Binding 119 Dmitri G. Fedorov and Kazuo Kitaura
4 Molecules-in-Molecules Fragment-Based Method for the Accurate Evaluation of Vibrational and Chiroptical Spectra for Large Molecules 141 K. V. Jovan Jose and Krishnan Raghavachari
5 Effective Fragment Molecular Orbital Method 165 Casper Steinmann and Jan H. Jensen
5.1 Introduction 165
5.2 Effective Fragment Molecular Orbital Method 168
5.3 Summary and Future Developments 180
References 180
6 Effective Fragment Potential Method: Past, Present, and Future 183 Lyudmila V. Slipchenko and Pradeep K. Gurunathan
6.1 Overview of the EFP Method 183
6.2 Milestones in the Development of the EFP Method 185
6.3 Present: Chemistry at Interfaces and Photobiology 192
6.4 Future Directions and Outlook 202
References 203
7 Nucleation Using the Effective Fragment Potential and Two-Level Parallelism 209 Ajitha Devarajan, Alexander Gaenko, Mark S. Gordon, and Theresa L. Windus
7.1 Introduction 209
7.2 Methods 211
7.3 Results 217
7.4 Conclusions 223
Acknowledgments 223
References 224
8 Five Years of Density Matrix Embedding Theory 227 Sebastian Wouters, Carlos A. Jime´nez-Hoyos, and Garnet K.L. Chan
8.1 Quantum Entanglement 227
8.2 Density Matrix Embedding Theory 228
8.3 Bath Orbitals from a Slater Determinant 230
8.4 The Embedding Hamiltonian 232
8.5 Self-Consistency 234
8.6 Green's Functions 236
8.7 Overview of the Literature 237
8.8 The One-Band Hubbard Model on the Square Lattice 237
1 Explicitly Correlated Local Electron Correlation Methods 1 Hans-Joachim Werner, Christoph Koppl, Qianli Ma, and Max Schwilk
1.1 Introduction 1
1.2 Benchmark Systems 3
1.3 Orbital-Invariant MP2 Theory 6
1.4 Principles of Local Correlation 9
1.5 Orbital Localization 10
1.6 Local Virtual Orbitals 12
1.7 Choice of Domains 24
1.8 Approximations for Distant Pairs 26
1.9 Local Coupled-Cluster Methods (LCCSD) 33
1.10 Triple Excitations 41
1.11 Local Explicitly Correlated Methods 41
1.12 Technical Aspects 53
1.13 Comparison of Local Correlation and Fragment Methods 57
1.14 Summary 60
Appendix A: The LCCSD Equations 63
Appendix B: Derivation of the Interaction Matrices 65
References 67
2 Density and Potential Functional Embedding: Theory and Practice 81 Kuang Yu, Caroline M. Krauter, Johannes M. Dieterich, and Emily A. Carter
2.1 Introduction 81
2.2 Theoretical Background 82
2.3 Density Functional Embedding Theory 84
2.4 Potential Functional Embedding Theory 101
2.5 Summary and Outlook 109
Acknowledgments 111
References 111
3 Modeling and Visualization for the Fragment Molecular Orbital Method with the Graphical User Interface FU, and Analyses of Protein-Ligand Binding 119 Dmitri G. Fedorov and Kazuo Kitaura
4 Molecules-in-Molecules Fragment-Based Method for the Accurate Evaluation of Vibrational and Chiroptical Spectra for Large Molecules 141 K. V. Jovan Jose and Krishnan Raghavachari
5 Effective Fragment Molecular Orbital Method 165 Casper Steinmann and Jan H. Jensen
5.1 Introduction 165
5.2 Effective Fragment Molecular Orbital Method 168
5.3 Summary and Future Developments 180
References 180
6 Effective Fragment Potential Method: Past, Present, and Future 183 Lyudmila V. Slipchenko and Pradeep K. Gurunathan
6.1 Overview of the EFP Method 183
6.2 Milestones in the Development of the EFP Method 185
6.3 Present: Chemistry at Interfaces and Photobiology 192
6.4 Future Directions and Outlook 202
References 203
7 Nucleation Using the Effective Fragment Potential and Two-Level Parallelism 209 Ajitha Devarajan, Alexander Gaenko, Mark S. Gordon, and Theresa L. Windus
7.1 Introduction 209
7.2 Methods 211
7.3 Results 217
7.4 Conclusions 223
Acknowledgments 223
References 224
8 Five Years of Density Matrix Embedding Theory 227 Sebastian Wouters, Carlos A. Jime´nez-Hoyos, and Garnet K.L. Chan
8.1 Quantum Entanglement 227
8.2 Density Matrix Embedding Theory 228
8.3 Bath Orbitals from a Slater Determinant 230
8.4 The Embedding Hamiltonian 232
8.5 Self-Consistency 234
8.6 Green's Functions 236
8.7 Overview of the Literature 237
8.8 The One-Band Hubbard Model on the Square Lattice 237
8.9 Dissociation of a Linear Hydrogen Chain 240
8.10 Summary 240
Acknowledgments 241
References 241
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826