This thesis is devoted to the study of the asymptotic behavior of singularly perturbed partial differential equations and some related free boundary problems arising from these two problems. We study the free boundary problems in the singulary limit and give some characterizations, and use this to study the dynamical behavior of competing species when the competition is strong. These results have many applications in physics and biology.
This thesis is devoted to the study of the asymptotic behavior of singularly perturbed partial differential equations and some related free boundary problems arising from these two problems. We study the free boundary problems in the singulary limit and give some characterizations, and use this to study the dynamical behavior of competing species when the competition is strong. These results have many applications in physics and biology.
Foreword.- Acknowledgements.- Introduction.- Uniqueness, Stability and Uniform Lipschitz Estimates.- Uniqueness in the Singular Limit.- The Dynamics of One Dimensional Singular Limiting Problem.- Approximate Clean Up Lemma.- Asymptotics in Strong Competition.- The Limited Equation of a Singular Perturbed System.- Reference.- Index.
Foreword.- Acknowledgements.- Introduction.- Uniqueness, Stability and Uniform Lipschitz Estimates.- Uniqueness in the Singular Limit.- The Dynamics of One Dimensional Singular Limiting Problem.- Approximate Clean Up Lemma.- Asymptotics in Strong Competition.- The Limited Equation of a Singular Perturbed System.- Reference.- Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826