37,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

This thesis investigates the fracture of nearly incompressible hyperelastic media. It covers the different characteristics of bulk material failure under dilatational or distortional loads and develops a unified description of the corresponding failure surface. It proposes a coupled strain and energy failure criterion for the assessment of notch-induced crack nucleation and presents a weak-interface-model that allows for efficient stress, strain and failure analyses of hyperelastic adhesive lap joints. Theoretical concepts for the measurement of fracture properties of nonlinear elastic…mehr

Produktbeschreibung
This thesis investigates the fracture of nearly incompressible hyperelastic media. It covers the different characteristics of bulk material failure under dilatational or distortional loads and develops a unified description of the corresponding failure surface. It proposes a coupled strain and energy failure criterion for the assessment of notch-induced crack nucleation and presents a weak-interface-model that allows for efficient stress, strain and failure analyses of hyperelastic adhesive lap joints. Theoretical concepts for the measurement of fracture properties of nonlinear elastic materials are provided. The methodology is developed using two exemplary hyperelastic silicones, DOWSIL 993 Structural Glazing Sealant and DOWSIL Transparent Structural Silicone Adhesive, and is validated using large sets of experiments of different loading conditions.
Autorenporträt
Philipp Rosendahl studied mechanical engineering at the Technical University of Darmstadt, the University of Illinois at Urbana-Champaign and the Royal Institute of Technology in Stockholm. He is currently working as the Junior Research Group Head for Structural Mechanics and Additive Manufacturing of the Institute of Structural Mechanics and Design at the Technical University of Darmstadt and co-founded the startup company 2phi, which aims at improving skier safety in the backcountry by transferring scientific advances into practice.