Laura Crosilla / Peter Schuster (eds.)Towards Practicable Foundations for Constructive Mathematics
From Sets and Types to Topology and Analysis
Towards Practicable Foundations for Constructive Mathematics
Herausgeber: Crosilla, Laura; Schuster, Peter
Laura Crosilla / Peter Schuster (eds.)Towards Practicable Foundations for Constructive Mathematics
From Sets and Types to Topology and Analysis
Towards Practicable Foundations for Constructive Mathematics
Herausgeber: Crosilla, Laura; Schuster, Peter
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This edited collection bridges the foundations and practice of constructive mathematics and focuses on the contrast between the theoretical developments, which have been most useful for computer science (ie: constructive set and type theories), and more specific efforts on constructive analysis, algebra and topology. Aimed at academic logician, mathematicians, philosophers and computer scientists with contributions from leading researchers, it is up to date, highly topical and broad in scope.
Andere Kunden interessierten sich auch für
- Qays ImranOn Some Types of Bitopological Groups with respect to ij-¿-Open Sets26,99 €
- Chinnadurai VSpecial Types of Fuzzy Sets and Their Applications in Decision Making42,99 €
- Luay A. A. AlswidiOn some types of bitopological groups21,99 €
- Ofer HarelStrategies for Data Analysis with Two Types of Missing Values32,99 €
- N. T. SuvarnaConvexity and Types of Arcs & Nodes in Fuzzy Graphs39,99 €
- Rana Al-MuttalibiCertain Types of Linear Operators on Probabilistic Hilbert Space22,99 €
- Klaus W. RoggenkampLattices over Orders II34,99 €
-
-
-
This edited collection bridges the foundations and practice of constructive mathematics and focuses on the contrast between the theoretical developments, which have been most useful for computer science (ie: constructive set and type theories), and more specific efforts on constructive analysis, algebra and topology. Aimed at academic logician, mathematicians, philosophers and computer scientists with contributions from leading researchers, it is up to date, highly topical and broad in scope.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Clarendon Press
- Seitenzahl: 372
- Erscheinungstermin: 8. Dezember 2005
- Englisch
- Abmessung: 242mm x 162mm x 27mm
- Gewicht: 689g
- ISBN-13: 9780198566519
- ISBN-10: 0198566514
- Artikelnr.: 21216165
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Clarendon Press
- Seitenzahl: 372
- Erscheinungstermin: 8. Dezember 2005
- Englisch
- Abmessung: 242mm x 162mm x 27mm
- Gewicht: 689g
- ISBN-13: 9780198566519
- ISBN-10: 0198566514
- Artikelnr.: 21216165
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Edited by Laura Crosilla, Universite di Firenze and Peter Schuster, Mathematical Institut, Universitaet Munich
Contributors: Douglas Bridges Michael Rathjen Alex Simpson Nicola Gambino Thomas Streicher Maria Emilia Maietti Giovanni Sambin Peter Hancock Anton Setzer Ulrich Berger Monika Seisenberger Sara Negri Jan von Plato Erik Palmgren Peter Aczel Christopher Fox A. Bucalo G. Rosolini Stephen Vickers Thierry Coquand Henri Lombardi Marie-Francoise Roy Hajime Ishihara Bas Spitters Hiroki Takamura Robin Havea Luminita Vita Vasco Brattka
Contributors: Douglas Bridges Michael Rathjen Alex Simpson Nicola Gambino Thomas Streicher Maria Emilia Maietti Giovanni Sambin Peter Hancock Anton Setzer Ulrich Berger Monika Seisenberger Sara Negri Jan von Plato Erik Palmgren Peter Aczel Christopher Fox A. Bucalo G. Rosolini Stephen Vickers Thierry Coquand Henri Lombardi Marie-Francoise Roy Hajime Ishihara Bas Spitters Hiroki Takamura Robin Havea Luminita Vita Vasco Brattka
* Introduction
* Errett Bishop
* 1: Michael Rathjen: Generalized Inductive Definitions in Constructive
Set Theory
* 2: Alex Simpson: Constructive Set Theories and their
Category-theoretic Models
* 3: Nicola Gambino: Presheaf models for Constructive Set Theories
* 4: Thomas Streicher: Universes in Toposes
* 5: Maria Emilia Maietti and Giovanni Sambin: Toward a minimalistic
foundation for constructive mathematics
* 6: Peter Hancock and Anton Setzer: Interactive Programs and Weakly
Final Coalgebras in Dependent Type Theory
* 7: Ulrich Berger and Monika Seisenberger: Applications of inductive
definitions and choice principles to program synthesis
* 8: Sara Negri and Jan von Plato: The duality of lcassical and
constructive notions and proofs
* 9: Erik Palmgren: Continuity on the real line and in formal spaces
* 10: Peter Aczel and Christopher Fox: Separation Properties in
Constructive Topology
* 11: A. Bucalo and G. Rosolini: Spaces as comonoids
* 12: Maria Emilia Maietti: Predicative exponentiation of locally
compact formal topologies over inductively generated ones
* 13: Stephen Vickers: Some constructive roads to Tychonoff
* 14: Thierry Coquand, Henri Lombardi and Marie-Francoise Roy: An
elementary characterisation of Krull dimension
* 15: Hajime Ishihara: Constructive reverse mathematics: compactness
properties
* 16: Bas Spitters: Approximating integrable sets by compacts
constructively
* 17: Hiroki Takamura: An introduction to the theory of c*-algegras in
constructive mathematics
* 18: Douglas Bridges and Robin Havea: Approximations to the numerical
range of an element of a Banach algebra
* 19: Douglas Bridges and Luminita Vita: The constructive uniqueness of
the locally convex topology on rn
* 20: Vasco Brattka: Computability on Non-Separable Banach Spaces and
Landau's Theorem
* Errett Bishop
* 1: Michael Rathjen: Generalized Inductive Definitions in Constructive
Set Theory
* 2: Alex Simpson: Constructive Set Theories and their
Category-theoretic Models
* 3: Nicola Gambino: Presheaf models for Constructive Set Theories
* 4: Thomas Streicher: Universes in Toposes
* 5: Maria Emilia Maietti and Giovanni Sambin: Toward a minimalistic
foundation for constructive mathematics
* 6: Peter Hancock and Anton Setzer: Interactive Programs and Weakly
Final Coalgebras in Dependent Type Theory
* 7: Ulrich Berger and Monika Seisenberger: Applications of inductive
definitions and choice principles to program synthesis
* 8: Sara Negri and Jan von Plato: The duality of lcassical and
constructive notions and proofs
* 9: Erik Palmgren: Continuity on the real line and in formal spaces
* 10: Peter Aczel and Christopher Fox: Separation Properties in
Constructive Topology
* 11: A. Bucalo and G. Rosolini: Spaces as comonoids
* 12: Maria Emilia Maietti: Predicative exponentiation of locally
compact formal topologies over inductively generated ones
* 13: Stephen Vickers: Some constructive roads to Tychonoff
* 14: Thierry Coquand, Henri Lombardi and Marie-Francoise Roy: An
elementary characterisation of Krull dimension
* 15: Hajime Ishihara: Constructive reverse mathematics: compactness
properties
* 16: Bas Spitters: Approximating integrable sets by compacts
constructively
* 17: Hiroki Takamura: An introduction to the theory of c*-algegras in
constructive mathematics
* 18: Douglas Bridges and Robin Havea: Approximations to the numerical
range of an element of a Banach algebra
* 19: Douglas Bridges and Luminita Vita: The constructive uniqueness of
the locally convex topology on rn
* 20: Vasco Brattka: Computability on Non-Separable Banach Spaces and
Landau's Theorem
* Introduction
* Errett Bishop
* 1: Michael Rathjen: Generalized Inductive Definitions in Constructive
Set Theory
* 2: Alex Simpson: Constructive Set Theories and their
Category-theoretic Models
* 3: Nicola Gambino: Presheaf models for Constructive Set Theories
* 4: Thomas Streicher: Universes in Toposes
* 5: Maria Emilia Maietti and Giovanni Sambin: Toward a minimalistic
foundation for constructive mathematics
* 6: Peter Hancock and Anton Setzer: Interactive Programs and Weakly
Final Coalgebras in Dependent Type Theory
* 7: Ulrich Berger and Monika Seisenberger: Applications of inductive
definitions and choice principles to program synthesis
* 8: Sara Negri and Jan von Plato: The duality of lcassical and
constructive notions and proofs
* 9: Erik Palmgren: Continuity on the real line and in formal spaces
* 10: Peter Aczel and Christopher Fox: Separation Properties in
Constructive Topology
* 11: A. Bucalo and G. Rosolini: Spaces as comonoids
* 12: Maria Emilia Maietti: Predicative exponentiation of locally
compact formal topologies over inductively generated ones
* 13: Stephen Vickers: Some constructive roads to Tychonoff
* 14: Thierry Coquand, Henri Lombardi and Marie-Francoise Roy: An
elementary characterisation of Krull dimension
* 15: Hajime Ishihara: Constructive reverse mathematics: compactness
properties
* 16: Bas Spitters: Approximating integrable sets by compacts
constructively
* 17: Hiroki Takamura: An introduction to the theory of c*-algegras in
constructive mathematics
* 18: Douglas Bridges and Robin Havea: Approximations to the numerical
range of an element of a Banach algebra
* 19: Douglas Bridges and Luminita Vita: The constructive uniqueness of
the locally convex topology on rn
* 20: Vasco Brattka: Computability on Non-Separable Banach Spaces and
Landau's Theorem
* Errett Bishop
* 1: Michael Rathjen: Generalized Inductive Definitions in Constructive
Set Theory
* 2: Alex Simpson: Constructive Set Theories and their
Category-theoretic Models
* 3: Nicola Gambino: Presheaf models for Constructive Set Theories
* 4: Thomas Streicher: Universes in Toposes
* 5: Maria Emilia Maietti and Giovanni Sambin: Toward a minimalistic
foundation for constructive mathematics
* 6: Peter Hancock and Anton Setzer: Interactive Programs and Weakly
Final Coalgebras in Dependent Type Theory
* 7: Ulrich Berger and Monika Seisenberger: Applications of inductive
definitions and choice principles to program synthesis
* 8: Sara Negri and Jan von Plato: The duality of lcassical and
constructive notions and proofs
* 9: Erik Palmgren: Continuity on the real line and in formal spaces
* 10: Peter Aczel and Christopher Fox: Separation Properties in
Constructive Topology
* 11: A. Bucalo and G. Rosolini: Spaces as comonoids
* 12: Maria Emilia Maietti: Predicative exponentiation of locally
compact formal topologies over inductively generated ones
* 13: Stephen Vickers: Some constructive roads to Tychonoff
* 14: Thierry Coquand, Henri Lombardi and Marie-Francoise Roy: An
elementary characterisation of Krull dimension
* 15: Hajime Ishihara: Constructive reverse mathematics: compactness
properties
* 16: Bas Spitters: Approximating integrable sets by compacts
constructively
* 17: Hiroki Takamura: An introduction to the theory of c*-algegras in
constructive mathematics
* 18: Douglas Bridges and Robin Havea: Approximations to the numerical
range of an element of a Banach algebra
* 19: Douglas Bridges and Luminita Vita: The constructive uniqueness of
the locally convex topology on rn
* 20: Vasco Brattka: Computability on Non-Separable Banach Spaces and
Landau's Theorem