249,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

Nanoscale Science, whose birth and further growth and development has been driven by the needs of the microelectronics industry on one hand, and by the sheer human curiosity on the other hand, has given researchers an unprecedented capability to design and construct devices whose function ality is based on quantum and mesoscopic effects. A necessary step in this process has been the development of reliable fabrication techniques in the nanometer scale: two-dimensional systems, quantum wires and dots, and Coulomb blockade structures with almost ideal properties can nowadays be fabricated, and…mehr

Produktbeschreibung
Nanoscale Science, whose birth and further growth and development has been driven by the needs of the microelectronics industry on one hand, and by the sheer human curiosity on the other hand, has given researchers an unprecedented capability to design and construct devices whose function ality is based on quantum and mesoscopic effects. A necessary step in this process has been the development of reliable fabrication techniques in the nanometer scale: two-dimensional systems, quantum wires and dots, and Coulomb blockade structures with almost ideal properties can nowadays be fabricated, and subjected to experimental studies. How does one fabricate micro/nanostructures of low dimensionality? How does one perform a nanoscale characterization of these structures? What are the fundamental properties typical to the structures? Which new physical processes in nanostructures need to be understood? What new physical processes may allow us to create new nanostructures? An improved understanding of these topics is necessary for creation of new concepts for future electronic and optoelectronic devices and for characterizing device structures based on those concepts.