Since their discovery, low dimensional materials have never stopped to intrigue scientists, whether they are physicists, chemists, or biochemists. Investigations of their nature and functions have always been and still are numerous and as soon as a solution is found for a given question, another one is raised. The coupling of nano-materials with photonics, i. e. nano-photonics, has produced a boiling pot of idea, problems, discovery and applications. This statement is abundantly illustrated in the present book. The interest in nano-optoelectronic materials and systems is very widespread, what…mehr
Since their discovery, low dimensional materials have never stopped to intrigue scientists, whether they are physicists, chemists, or biochemists. Investigations of their nature and functions have always been and still are numerous and as soon as a solution is found for a given question, another one is raised. The coupling of nano-materials with photonics, i. e. nano-photonics, has produced a boiling pot of idea, problems, discovery and applications. This statement is abundantly illustrated in the present book. The interest in nano-optoelectronic materials and systems is very widespread, what gives a really international and multicultural flavour to nano-optoelectronic meetings. One of them was organized by our-self in May 2000 in Kiev as a NATO Advanced Research Workshop and EC-Spring School. The arrival of the new millennium provides an obvious transition point at which many aspects of nano-science and nano-engineering of nano photonic systems can be assessed with respect to the research progresses made in the pre ceding decades and to the challenges that lie ahead in the coming decades. This book was planed to mark this with the objective of presenting a collection of papers from experts, which provide broad perspectives on the state-of-the-art in the various disciplines of nano science and nano-engineering and on the directions for future research.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
NATO Science Series II Mathematics, Physics and Chemistry 6
Lorenzo Pavesi is Professor of experimental physics at the university of Trento (Italy). Born the 21st of november 1961, he received his master degree in physics in 1985 at the university of trento and the phd in physics in 1990 at the ecole polytechnique federale of lausanne (switzerland). in 1990 he became assistant professor, an associate professor in 1999 and full professor in 2002 at the university of trento. He organized several international conferences, workshops and schools and is a frequent invited speaker. He manages several research projects, both national and european.
Inhaltsangabe
I. Fundamentals of Nano-Scale Science for Photonics applications.- Nanophotonics: nanoscale optical science and technology.- Three-dimensional nanostructures with electron and photon confinement.- Dielectric-polymer nanocomposite and thin film photonic crystals: Towards three-dimensional photonic crystals with a bandgap in the visible spectrum.- Quantum wires and quantum dots for optoelectronics: recent advances with epitaxial growth on nonplanar substrates.- Quantum dot lasers.- II. Low dimensional silicon for photonics.- Nanostructured silicon as an active optoelectronic material.- Silicon light emitters: Preparation, properties, limitations and integration with microelectronic circuitry.- Visible light emission from a new material system: Si/SiO2 superlattices in optical microcavities.- Silicon nanostructures in Si/SiO2 superlattices for light emission applications: possibilities and limits.- First principles optical properties of low dimensional silicon structures.- Silicon nanostructures and their interactions with erbium ions.- III. Biomolecular Technologies.- Nicks, nodes, and new motifs for DNA nanotechnology.- Interaction of biomaterials with porous silicon.- IV. Molecular-Scale Engineering: polymers and carbon-based nanostructures.- Polydiacetylene PTS: a molecular quantum wire with exceptional optical properties.- The electronic structure of carbon-based nanostructures: fullerenes, onions and tubes.- Carbon nanostructure: characterization by optics and resonance Raman scattering.- Encapsulation of Transition Metals into Carbon Nanoclusters.- V. New technologies for producing nano- systems.- Development of coating technologies using nano particles.- Surface atomic scale engineering by deposition of mass selected clusters: STM and helium scattering analysis.- Visible and infrared photoluminescence from deposited germanium-oxide clusters and from Ge nanocrystals.- New directions in nanotechnology: Imprint techniques.- Self-assembly of nanoblocks and molecules in optical thin-film nanostructures.- VI. Nano- and Molecular-Scale Characterization.- Soft X-ray spectroscopy as a probe of the electronic structure of nanostructured solids..- Optical spectroscopy of carrier relaxation and transport in III/V semiconductor structures.- Near-field scanning optical spectroscopy of quasi-one dimensional semiconductor nanostructures.- Optical characteristics of nanostructured III-V compounds.- Scanning probe microscopy (STM, AFM) investigation of carbon nanotubes.- Molecular spectroscopy of nanoparticles.- VII. Novel Circuit Architecture of Nano-Optoelectronic Systems.- Exploring the ultimate limits of control: Quantum networks for non-classical information processing.- Chaos in quantum machines.- Problems and perspectives in quantum-dot based computation.- List of Participants.
I. Fundamentals of Nano-Scale Science for Photonics applications.- Nanophotonics: nanoscale optical science and technology.- Three-dimensional nanostructures with electron and photon confinement.- Dielectric-polymer nanocomposite and thin film photonic crystals: Towards three-dimensional photonic crystals with a bandgap in the visible spectrum.- Quantum wires and quantum dots for optoelectronics: recent advances with epitaxial growth on nonplanar substrates.- Quantum dot lasers.- II. Low dimensional silicon for photonics.- Nanostructured silicon as an active optoelectronic material.- Silicon light emitters: Preparation, properties, limitations and integration with microelectronic circuitry.- Visible light emission from a new material system: Si/SiO2 superlattices in optical microcavities.- Silicon nanostructures in Si/SiO2 superlattices for light emission applications: possibilities and limits.- First principles optical properties of low dimensional silicon structures.- Silicon nanostructures and their interactions with erbium ions.- III. Biomolecular Technologies.- Nicks, nodes, and new motifs for DNA nanotechnology.- Interaction of biomaterials with porous silicon.- IV. Molecular-Scale Engineering: polymers and carbon-based nanostructures.- Polydiacetylene PTS: a molecular quantum wire with exceptional optical properties.- The electronic structure of carbon-based nanostructures: fullerenes, onions and tubes.- Carbon nanostructure: characterization by optics and resonance Raman scattering.- Encapsulation of Transition Metals into Carbon Nanoclusters.- V. New technologies for producing nano- systems.- Development of coating technologies using nano particles.- Surface atomic scale engineering by deposition of mass selected clusters: STM and helium scattering analysis.- Visible and infrared photoluminescence from deposited germanium-oxide clusters and from Ge nanocrystals.- New directions in nanotechnology: Imprint techniques.- Self-assembly of nanoblocks and molecules in optical thin-film nanostructures.- VI. Nano- and Molecular-Scale Characterization.- Soft X-ray spectroscopy as a probe of the electronic structure of nanostructured solids..- Optical spectroscopy of carrier relaxation and transport in III/V semiconductor structures.- Near-field scanning optical spectroscopy of quasi-one dimensional semiconductor nanostructures.- Optical characteristics of nanostructured III-V compounds.- Scanning probe microscopy (STM, AFM) investigation of carbon nanotubes.- Molecular spectroscopy of nanoparticles.- VII. Novel Circuit Architecture of Nano-Optoelectronic Systems.- Exploring the ultimate limits of control: Quantum networks for non-classical information processing.- Chaos in quantum machines.- Problems and perspectives in quantum-dot based computation.- List of Participants.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826