208,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
104 °P sammeln
  • Gebundenes Buch

This book provides a modern problem-solving compendium to help meet challenges in fuel cell science and technology worldwide. Along with the scientific foundation of this technology, the coverage includes recently developed strategies for the design, preparation, and characterization of catalytic materials for fuel cell electrodes, especially for new fuel cell cathodes. The methodology described includes a wide spectrum of methods for spurring new fuel cell catalysis concepts and improving existing designs to increase their performance. This is a key resource for a wide range of engineering and research scientist, professionals, and entrepreneurs.…mehr

Produktbeschreibung
This book provides a modern problem-solving compendium to help meet challenges in fuel cell science and technology worldwide. Along with the scientific foundation of this technology, the coverage includes recently developed strategies for the design, preparation, and characterization of catalytic materials for fuel cell electrodes, especially for new fuel cell cathodes. The methodology described includes a wide spectrum of methods for spurring new fuel cell catalysis concepts and improving existing designs to increase their performance. This is a key resource for a wide range of engineering and research scientist, professionals, and entrepreneurs.
Autorenporträt
Andrzej Wieckowski is Professor of Chemistry at the University of Illinois at Urbana-Champaign. Professor Wieckowski pioneered the development of the method now known as Electrochemical NMR (EC-NMR) that combines metal/surface NMR and electrochemistry for studies of interfaces. Jens K. Nørskov is Professor of Chemical Engineering and Photon Science, Stanford University, and Director of the Center for Interface Science and Catalysis at the SLAC National Accelerator Laboratory. His research interests include the theoretical description of surfaces, catalysis, electrochemistry, materials, nanostructures, and biomolecules.