Functional Differential Equations and Approximation of Fixed Points
Proceedings, Bonn, July 1978
Herausgegeben:Peitgen, H.-O.; Walther, H.-O.
Functional Differential Equations and Approximation of Fixed Points
Proceedings, Bonn, July 1978
Herausgegeben:Peitgen, H.-O.; Walther, H.-O.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dedicated to Heinz Unger on occasion of his 65. birthday
Andere Kunden interessierten sich auch für
- S.M. Nikol'skiiApproximation of Functions of Several Variables and Imbedding Theorems75,99 €
- Ronald A. De VoreThe Approximation of Continuous Functions by Positive Linear Operators34,99 €
- Special Functions, Partial Differential Equations, and Harmonic Analysis74,99 €
- Giorgio AusielloComplexity and Approximation53,99 €
- N. DubinA Stochastic Model for Immunological Feedback in Carcinogenesis: Analysis and Approximations42,99 €
- Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen27,99 €
- H. KurkeDie Approximationseigenschaft lokaler Ringe34,95 €
-
-
-
Dedicated to Heinz Unger on occasion of his 65. birthday
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Lecture Notes in Mathematics 730
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-09518-7
- 1979.
- Seitenzahl: 516
- Erscheinungstermin: 1. August 1979
- Englisch
- Abmessung: 235mm x 155mm x 28mm
- Gewicht: 806g
- ISBN-13: 9783540095187
- ISBN-10: 3540095187
- Artikelnr.: 23587619
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Mathematics 730
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-09518-7
- 1979.
- Seitenzahl: 516
- Erscheinungstermin: 1. August 1979
- Englisch
- Abmessung: 235mm x 155mm x 28mm
- Gewicht: 806g
- ISBN-13: 9783540095187
- ISBN-10: 3540095187
- Artikelnr.: 23587619
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Numerical continuation methods and bifurcation.- Periodic solutions of some autonomous differential equations with variable time delay.- Global branching and multiplicity results for periodic solutions of functional differential equations.- Existence of oscillating solutions for certain differential equations with delay.- Approximation of delay systems with applications to control and identification.- A homotopy method for locating all zeros of a system of polynomials.- A view of complementary pivot theory (or solving equations with homotopies).- On numerical approximation of fixed points in C[0,1].- An application of simplicial algorithms to variational inequalities.- Delay equations in biology.- Retarded equations with infinite delays.- A degree continuation theorem for a class of compactly perturbed differentiable Fredholm maps of index O.- Chaotic behavior of multidimensional difference equations.- Numerical solution of a generalized eigenvalue problem for even mappings.- Positive solutions of functional differential equations.- A restart algorithm without an artificial level for computing fixed points on unbounded regions.- Path following approaches for solving nonlinear equations: Homotopy, continuous newton and projection.- A nonlinear singularly perturbed volterra functional differential equation.- Periodic solutions of nonlinear autonomous functional differential equations.- The Leray-Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems.- On computational aspects of topological degree in ?n.- Perturbations in fixed point algorithms.- Bifurcation of a stationary solution of a dynamical system into n-dimensional tori of quasiperiodic solutions.- Periodic solutions of delay-differentialequations.- Hamiltonian triangulations of Rn.- The beer barrel theorem.- On instability, ?-limit sets and periodic solutions of nonlinear autonomous differential delay equations.
Numerical continuation methods and bifurcation.- Periodic solutions of some autonomous differential equations with variable time delay.- Global branching and multiplicity results for periodic solutions of functional differential equations.- Existence of oscillating solutions for certain differential equations with delay.- Approximation of delay systems with applications to control and identification.- A homotopy method for locating all zeros of a system of polynomials.- A view of complementary pivot theory (or solving equations with homotopies).- On numerical approximation of fixed points in C[0,1].- An application of simplicial algorithms to variational inequalities.- Delay equations in biology.- Retarded equations with infinite delays.- A degree continuation theorem for a class of compactly perturbed differentiable Fredholm maps of index O.- Chaotic behavior of multidimensional difference equations.- Numerical solution of a generalized eigenvalue problem for even mappings.- Positive solutions of functional differential equations.- A restart algorithm without an artificial level for computing fixed points on unbounded regions.- Path following approaches for solving nonlinear equations: Homotopy, continuous newton and projection.- A nonlinear singularly perturbed volterra functional differential equation.- Periodic solutions of nonlinear autonomous functional differential equations.- The Leray-Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems.- On computational aspects of topological degree in ?n.- Perturbations in fixed point algorithms.- Bifurcation of a stationary solution of a dynamical system into n-dimensional tori of quasiperiodic solutions.- Periodic solutions of delay-differentialequations.- Hamiltonian triangulations of Rn.- The beer barrel theorem.- On instability, ?-limit sets and periodic solutions of nonlinear autonomous differential delay equations.