39,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
20 °P sammeln
  • Broschiertes Buch

The two-dimensional Hubbard model for interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the high-Tc cuprates. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom, bosonic fields are introduced which correspond to different collective orders, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means…mehr

Produktbeschreibung
The two-dimensional Hubbard model for interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the high-Tc cuprates. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom, bosonic fields are introduced which correspond to different collective orders, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of "flowing bosonization", describable as a continuous, scale- dependent Hubbard-Stratonovich transformation. This allows an efficient parameterization of the momentum- dependent effective interaction between fermions, and it makes it possible to follow the renormalization flow into the regimes with broken symmetries, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of the competing types of order.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Simon Friederich obtained his PhD in theoretical physics at the University of Heidelberg in 2010. The present book is based on his PhD thesis, which he wrote under the supervision of Prof. Dr. Christof Wetterich. At present, he is working on topics in the philosophy of physics at the University of Wuppertal.