This is the first-ever book on computational group theory.It provides extensive and up-to-date coverage of thefundamental algorithms for permutation groups with referenceto aspects of combinatorial group theory, soluble groups,and p-groups where appropriate.The book begins with a constructive introduction to grouptheory and algorithms for computing with small groups,followed by a gradual discussion of the basic ideas of Simsfor computing with very large permutation groups, andconcludes with algorithms that use group homomorphisms, asin the computation of Sylowsubgroups. No background ingroup theory is assumed.The emphasis is on the details of the data structures andimplementation which makes the algorithms effective whenapplied to realistic problems. The algorithms are developedhand-in-hand with the theoretical and practicaljustification.All algorithms are clearly described,examples are given, exercises reinforce understanding, anddetailed bibliographical remarks explain the history andcontext of the work.Much of the later material on homomorphisms, Sylowsubgroups, and soluble permutation groups is new.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.