81,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
41 °P sammeln
  • Broschiertes Buch

In the first volume, Fundamental Concepts in Biophysics, the authors lay down a foundation for biophysics study. Rajiv Singh opens the book by pointing to the central importance of "Mathematical Methods in Biophysics". William Fink follows with a discussion on "Quantum Mechanics Basic to Biophysical Methods". Together, these two chapters establish some of the principles of mathematical physics underlying many biophysics techniques. Because computer modeling forms an intricate part of biophysics research, Subhadip Raychaudhuri and colleagues introduce the use of computer modeling in…mehr

Produktbeschreibung
In the first volume, Fundamental Concepts in Biophysics, the authors lay down a foundation for biophysics study. Rajiv Singh opens the book by pointing to the central importance of "Mathematical Methods in Biophysics". William Fink follows with a discussion on "Quantum Mechanics Basic to Biophysical Methods". Together, these two chapters establish some of the principles of mathematical physics underlying many biophysics techniques. Because computer modeling forms an intricate part of biophysics research, Subhadip Raychaudhuri and colleagues introduce the use of computer modeling in "Computational Modeling of Receptor-Ligand Binding and Cellular Signaling Processes". Yin Yeh and coworkers bring to the reader's attention the physical basis underlying the common use of fluorescence spectroscopy in biomedical research in their chapter "Fluorescence Spectroscopy". Electrophysiologists have also applied biophysics techniques in the study of membrane proteins, and Tsung-Yu Chen et al. explore stochastic processes of ion transport in their "Electrophysiological Measurements of Membrane Proteins". Michael Saxton takes up a key biophysics question about particle distribution and behavior in systems with spatial or temporal inhomogeneity in his chapter "Single-Particle Tracking". Finally, in "NMR Measurement of Biomolecule Diffusion", Thomas Jue explains how magnetic resonance techniques can map biomolecule diffusion in the cell to a theory of respiratory control.

This book thus launches the Handbook of Modern Biophysics series and sets up for the reader some of the fundamental concepts underpinning the biophysics issues to be presented in future volumes.
Autorenporträt
Thomas Jue is a Professor in the Department of Biochemistry and Molecular Medicine at the University of California Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo and has published extensively in the field of magnetic resonance spectroscopy and imaging, near-infrared spectroscopy, bioenergetics, cardiovascular regulation, exercise, and marine biology. Over the past several years, he has led the way as a Chair of the Biophysics Graduate Group Program to establish attractive but scholarly approaches to educate graduate students with a balance of physical-science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. The Handbook of Modern Biophysics represents one approach.
Rezensionen
From the reviews: "Thomas Jue from the University of California Davis, has introduced a new series of books under the title Handbook of Modern Biophysics. ... Reading of the first volume of the series Handbook of Modern Biophysics leads to the conclusion that this form of presentation of modern biophysical problems is very useful from the educational point of view. ... very helpful for students and young scientists working in molecular biology, biochemistry or molecular physics." (Genowefa Slósarek, Acta Biochimica Polonica, December, 2009) "The book 'Fundamental Concepts in Biophysics' launches new book series, which shall be dedicated to exploration of physical techniques that are used to study biological systems. ... Problems solutions are listed at the end of the book. Suggestions for further reading are included, as well. The book represents a very welcomed text for graduated students, their mentors, or for advanced researchers planning an excursion into a new experimental field." (L'ubica Lacinová, General Physiology and Biophysics, Vol. 29, April, 2010)