FUNDAMENTAL SPACECRAFT DYNAMICS AND CONTROL One of the most important topics in aerospace engineering, orbital mechanics is the focus of this comprehensive reference text that includes the astrodynamics around an asteroid, an emergent and increasingly crucial field for next generation space research. Readers are first introduced to the fundamentals before learning advanced concepts such as periodic orbit, the Poincaré map, Lagrange bracket, three body problems, the Lambert problem, and orbital determination. Other relevant topics including perturbed orbit motion and spacecraft control, optimal…mehr
FUNDAMENTAL SPACECRAFT DYNAMICS AND CONTROL One of the most important topics in aerospace engineering, orbital mechanics is the focus of this comprehensive reference text that includes the astrodynamics around an asteroid, an emergent and increasingly crucial field for next generation space research. Readers are first introduced to the fundamentals before learning advanced concepts such as periodic orbit, the Poincaré map, Lagrange bracket, three body problems, the Lambert problem, and orbital determination. Other relevant topics including perturbed orbit motion and spacecraft control, optimal orbit control and attitude capture are clearly detailed and explained. * Covers the most updated contents in spacecraft dynamics and control, both in theory and application, with many special simulation examples and figures * Introduces the astrodynamics around asteroids and perturbed orbit motions, concepts increasingly used in space missions * Written by an experienced researcher in the field * Includes an appendix explaining the basics of attitude dynamics and also exercise problems at the end of every chapter Fundamental Spacecraft Dynamics and Control is a systematic guide based on years of teaching and research on orbital mechanics and attitude control. It will serve as a useful reference for graduate and advanced students of aerospace engineering.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Preface xi Acknowledgments xiii About the Author xv Part I Orbital Mechanics 1 Introduction 3 1.1 History 3 1.1.1 Kepler's Laws 3 1.1.2 Newton's Laws 4 1.1.3 Space Missions 5 1.2 Coordinate Systems 6 1.2.1 Earth Reference Frame 6 1.2.2 Sun-centered Frame 8 1.2.3 Right Ascension-Declination System 8 1.2.4 Perifocal Coordinate System 9 1.2.5 Satellite Coordinate System 9 1.2.6 Topo-centric-horizon Coordinate System 9 1.3 Time System 10 1.3.1 Clocks 10 1.3.2 Time 11 1.3.3 Reference Motions 14 1.4 References and Further Reading 16 1.5 Summary and Keywords 16 Problems 17 References 17 2 Keplerian Motion 19 2.1 N-body System 19 2.2 The Two-body Problem 21 2.2.1 Geometry for Two Bodies in an Inertial Reference Frame 21 2.2.2 Relative Motion of Two Bodies 21 2.2.3 Constants of the Motion 23 2.2.4 Orbital Path 27 2.3 Orbital Elements 36 2.3.1 Kepler's COEs 36 2.3.2 Alternate Orbital Element Quantities 38 2.3.3 A Calculation Example 38 2.4 Coordinate Transformations 40 2.4.1 Rotation 41 2.4.2 From P Q W to I J K 41 2.4.3 From I J K to S E Z 43 2.4.4 Single Radar Observation 45 2.4.5 Summary of the Transformation 48 2.4.6 Three Position Vectors (Gibbs Method) 50 2.5 Time of Flight (TOF) 51 2.5.1 Kepler's Equation (Elliptical Orbits) 51 2.5.2 Numerical Solution 53 2.5.3 Universal Variable X 56 2.5.4 f and g Expansion 60 2.6 Summary and Keywords 62 Problems 63 References 67 3 Orbit Maneuver 69 3.1 Basic Orbital Transfer 69 3.1.1 In-plane (Coplanar) Changes 69 3.1.2 Out-of-plane (Non-coplanar) Changes 71 3.1.3 The Phase Angle 72 3.2 Ballistic Missiles 73 3.2.1 Ballistic Missile Trajectory 74 3.2.2 Effect of the Earth's Rotation 77 3.3 Lunar Missions 80 3.3.1 Possibility of Transfer 80 3.3.2 More Practical Scenario 83 3.4 Interplanetary Travel 87 3.4.1 Sphere of Influence (SOI) 88 3.4.2 Scenario 89 3.4.3 Gravity Assist 93 3.5 Launch Issues, Starting the Mission 96 3.5.1 Launch Time 96 3.5.2 When and Where to Launch 97 3.5.3 Launch Velocity 98 3.5.4 Rockets and Launch Vehicles 100 3.5.5 Reentry 101 3.6 Summary and Keywords 102 Problems 102 References 106 4 Special Topics 107 4.1 Relative Motion - CW Equation 107 4.1.1 Equations of Motion 107 4.1.2 Examples 110 4.1.3 J2 Perturbed No-circular Target Orbit 112 4.2 Lambert Problem 113 4.2.1 Lambert's Theorem 114 4.2.2 Culp's Proof of Lambert's Theorem 117 4.2.3 f , g Function Algorithm 119 4.2.4 Examples 120 4.2.5 Comparison of CW and Nonlinear Lambert Analysis 122 4.3 Orbit Determination 123 4.4 Optimal Control 127 4.5 Three-Body Problem - CRTBP 132 4.5.1 Equations of Motion 134 4.5.2 Lagrange Points 135 4.5.3 Examples of CRTBP 137 4.6 Summary and Keywords 139 Problems 141 References 145 5 Perturbed Orbital Motions 147 5.1 Special Perturbation 147 5.1.1 General Concept of Perturbation 147 5.1.2 Cowell's Method 148 5.1.3 Encke's Method 148 5.1.4 Variation of Parameters (COEs) 149 5.2 Systematic Method to Derive VOP 151 5.2.1 Variation of Orbital Elements 151 5.2.2 Variation of r and 156 5.3 General Perturbations (GA) 157 5.3.1 An Example of GP 158 5.3.2 General Perturbation Techniques 158 5.3.3 Total Perturbation 161 5.3.4 Analytical Perturbation Formulation 162 5.3.5 Gravity Potential 165 5.4 Numerical Methods 168 5.5 Summary and Keywords 169 Problems 169 References 171 6 Orbital Motion Around Asteroids 173 6.1 Introduction 173 6.2 Problem Formulation 174 6.3 Motion Equations 177 6.4 Progress and Some Conclusions 178 6.4.1 Secular Motion 178 6.4.2 Resonance 180 6.4.3 Periodic Orbits 180 6.5 Conclusions 182 6.6 Summary and Keywords 182 Acknowledgments 183 Problems 183 References 183 7 Application 185 7.1 Two Line Elements (TLE) 185 7.2 GPS RINEX 187 7.2.1 Distribution of Ephemerides 187 7.2.2 A GPS RINEX Navigation File 188 7.3 Remote Observation 188 7.3.1 Orbital Coverage 188 7.3.2 Ground Track 189 7.3.3 Ground Station 193 7.4 Summary and Keywords 196 Problems 198 References 198 Part II Attitude Dynamics 8 Rigid Body Kinematics 201 8.1 Attitude Notions 201 8.1.1 Attitude 201 8.1.2 Frames 202 8.1.3 Vector 204 8.2 Attitude Parameters 205 8.2.1 Direct Cosine Matrix 205 8.2.2 Euler Angles 207 8.3 Differential Equations of Kinematics 210 8.3.1 Typical Problem Involving Angular Velocity and Attitude 213 8.4 Euler's Theorem 214 8.4.1 Another Four-Parameter Set 215 8.4.2 Summary and Extension of Kinematics Notation 216 8.5 Attitude Determination 219 8.5.1 Sensors 219 8.5.2 Attitude Determination 222 8.6 Summary and Keywords 228 Problems 228 References 230 9 Attitude Dynamics 231 9.1 Rigid Body Models 231 9.1.1 Particle Model 232 9.1.2 Continuous Model 232 9.1.3 Angular Momentum 236 9.2 Inertia Tensor 238 9.2.1 Calculation of Inertia Tensor ( ) 238 9.2.2 Parallel Axis Theorem (PAT) 240 9.2.3 Change of Vector Basis Theorem 242 9.2.4 Inertia with a Rotating Panel 244 9.3 Equation of S/C Motion 245 9.3.1 Angular Momentum Principle 245 9.3.2 Rotational Equation of Motion 246 9.3.3 Coupled Equations of Motion 247 9.4 Euler's Equation 247 9.4.1 Axisymmetric, Torque-Free Rigid Body 248 9.4.2 Axisymmetric, Torque-Free Rigid Body Summary 252 9.4.3 Asymmetric, Torque-Free Rigid Body 253 9.5 Summary and Keywords 255 Problems 255 References 255 10 Attitude Stabilization and Control 257 10.1 Free Body Motion Stability 257 10.2 Dual-Spin Stabilization 259 10.3 Gravity Gradient Stabilization 260 10.4 Three-axis Stabilization 263 10.5 Complete Dynamical Modeling of Spacecraft 266 10.5.1 Flexible Panels Example 267 10.5.2 Liquid Sloshing Example 268 10.5.3 A Mass Spring S/C Example 268 10.6 Summary and Keywords 269 Problems 269 References 271 Appendix A Math Review 273 A.1 Power, Taylor Series 273 A.2 Differential Correction 276 Algorithm Process 277 A.3 Spherical Trigonometry 278 A.4 Summary and Keywords 281 References 281 Index 283
Rezensionen
"I consider this text a valuable addition to the library of both the student and the practitioner. I know of no other text that follows the unique and innovative approach of treating introductory spacecraft dynamics and control by means of vectrix calculus. This book can be considered as a prequel to those wishing to study the more advanced graduate-level text of Hughes." (IEEE Control Systems Magazine, 1 April 2015)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826