104,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 2-4 Wochen
payback
52 °P sammeln
  • Broschiertes Buch

Fundamentals of Heat and Fluid Flow in High Temperature Fuel Cells introduces key-concepts relating to heat, fluid and mass transfer as applied to high temperature fuel cells. The book briefly covers different type of fuel cells and discusses solid oxide fuel cells in detail, presenting related mass, momentum, energy and species equation. It then examines real case studies of hydrogen- and methane-fed SOFC, as well as combined heat and power and hybrid energy systems. This comprehensive reference is a useful resource for those working in high temperature fuel cell modeling and development, including energy researchers, engineers and graduate students. …mehr

Produktbeschreibung
Fundamentals of Heat and Fluid Flow in High Temperature Fuel Cells introduces key-concepts relating to heat, fluid and mass transfer as applied to high temperature fuel cells. The book briefly covers different type of fuel cells and discusses solid oxide fuel cells in detail, presenting related mass, momentum, energy and species equation. It then examines real case studies of hydrogen- and methane-fed SOFC, as well as combined heat and power and hybrid energy systems. This comprehensive reference is a useful resource for those working in high temperature fuel cell modeling and development, including energy researchers, engineers and graduate students.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Prof. Majid Ghassemi is Professor in the Department of Mechanical Engineering at the K. N. Toosi University of Technology; one of the most prestigious technical universities in Tehran, Iran. Professor Ghassemi has been recognized as Global Talent, also known as an Exceptional Talent, endorsed by the Royal Academy of Engineering of the United Kingdom, since 2015. He received that honor when he was acting as a Visiting Professor at the Centre for Fuel Cell and Hydrogen Research at the University of Birmingham, United Kingdom. He teaches graduate and undergraduate courses and conducts research in the area of heat transfer and its application in bio and micro sensors, drug delivery, fuel cells,micro channels and alternative energy. He has over 20 years of academic and industrial experience and served as the President of the K. N. Toosi University of Technology from 2010 to 2013.