Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's…mehr
Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.
Artikelnr. des Verlages: 12438952, 978-1-4419-1546-7
1st Edition.
Seitenzahl: 445
Erscheinungstermin: 22. März 2010
Englisch
Abmessung: 242mm x 164mm x 35mm
Gewicht: 864g
ISBN-13: 9781441915467
ISBN-10: 144191546X
Artikelnr.: 27356625
Inhaltsangabe
Non-Silicon MOSFET Technology: A Long Time Coming.- Properties and Trade-Offs of Compound Semiconductor MOSFETs.- Device Physics and Performance Potential of III-V Field-Effect Transistors.- Theory of HfO2-Based High-k Dielectric Gate Stacks.- Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors.- Interfacial Chemistry of Oxides on III-V Compound Semiconductors.- Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model.- Materials and Technologies for III-V MOSFETs.- InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS.- Sub-100 nm Gate III-V MOSFET for Digital Applications.- Electrical and Material Characteristics of Hafnium Oxide with Silicon Interface Passivation on III-V Substrate for Future Scaled CMOS Technology.- p-type Channel Field-Effect Transistors.- Insulated Gate Nitride-Based Field Effect Transistors.- Technology/Circuit Co-Design for III-V FETs.
Non-Silicon MOSFET Technology: A Long Time Coming.- Properties and Trade-Offs of Compound Semiconductor MOSFETs.- Device Physics and Performance Potential of III-V Field-Effect Transistors.- Theory of HfO2-Based High-k Dielectric Gate Stacks.- Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors.- Interfacial Chemistry of Oxides on III-V Compound Semiconductors.- Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model.- Materials and Technologies for III-V MOSFETs.- InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS.- Sub-100 nm Gate III-V MOSFET for Digital Applications.- Electrical and Material Characteristics of Hafnium Oxide with Silicon Interface Passivation on III-V Substrate for Future Scaled CMOS Technology.- p-type Channel Field-Effect Transistors.- Insulated Gate Nitride-Based Field Effect Transistors.- Technology/Circuit Co-Design for III-V FETs.
Non-Silicon MOSFET Technology: A Long Time Coming.- Properties and Trade-Offs of Compound Semiconductor MOSFETs.- Device Physics and Performance Potential of III-V Field-Effect Transistors.- Theory of HfO2-Based High-k Dielectric Gate Stacks.- Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors.- Interfacial Chemistry of Oxides on III-V Compound Semiconductors.- Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model.- Materials and Technologies for III-V MOSFETs.- InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS.- Sub-100 nm Gate III-V MOSFET for Digital Applications.- Electrical and Material Characteristics of Hafnium Oxide with Silicon Interface Passivation on III-V Substrate for Future Scaled CMOS Technology.- p-type Channel Field-Effect Transistors.- Insulated Gate Nitride-Based Field Effect Transistors.- Technology/Circuit Co-Design for III-V FETs.
Non-Silicon MOSFET Technology: A Long Time Coming.- Properties and Trade-Offs of Compound Semiconductor MOSFETs.- Device Physics and Performance Potential of III-V Field-Effect Transistors.- Theory of HfO2-Based High-k Dielectric Gate Stacks.- Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors.- Interfacial Chemistry of Oxides on III-V Compound Semiconductors.- Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model.- Materials and Technologies for III-V MOSFETs.- InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS.- Sub-100 nm Gate III-V MOSFET for Digital Applications.- Electrical and Material Characteristics of Hafnium Oxide with Silicon Interface Passivation on III-V Substrate for Future Scaled CMOS Technology.- p-type Channel Field-Effect Transistors.- Insulated Gate Nitride-Based Field Effect Transistors.- Technology/Circuit Co-Design for III-V FETs.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497