Edward Kamen, Bonnie Heck
Fundamentals of Signals and Systems Using the Web and MATLAB
Pearson New International Edition
Edward Kamen, Bonnie Heck
Fundamentals of Signals and Systems Using the Web and MATLAB
Pearson New International Edition
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
For a one-quarter or one-semster course on Signals and Systems. This new edition delivers an accessible yet comprehensive analytical introduction to continuous-time and discrete-time signals and systems. It also incorporates a strong emphasis on solving problems and exploring concepts, using demos, downloaded data, and MATLAB® to demonstrate solutions for a wide range of problems in engineering and other fields such as financial data analysis. Its flexible structure adapts easily for courses taught by semester or by quarter.
Andere Kunden interessierten sich auch für
- Akan, Aydin, Ph.D. (Department of Electrical and Electronics EngineeSignals and Systems Using Matlab(r)148,99 €
- Matthew N. O. SadikuSignals and Systems103,99 €
- Matthew N. O. SadikuSignals and Systems63,99 €
- Yair M. AltmanAccelerating MATLAB Performance136,99 €
- Alan OppenheimSignals and Systems114,99 €
- Rodger ZiemerSignals and Systems100,99 €
- Paul HillAudio and Speech Processing with MATLAB49,99 €
-
-
-
For a one-quarter or one-semster course on Signals and Systems. This new edition delivers an accessible yet comprehensive analytical introduction to continuous-time and discrete-time signals and systems. It also incorporates a strong emphasis on solving problems and exploring concepts, using demos, downloaded data, and MATLAB® to demonstrate solutions for a wide range of problems in engineering and other fields such as financial data analysis. Its flexible structure adapts easily for courses taught by semester or by quarter.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Pearson Education Limited
- 3 ed
- Seitenzahl: 648
- Erscheinungstermin: 26. Juli 2013
- Englisch
- Abmessung: 216mm x 277mm x 27mm
- Gewicht: 1550g
- ISBN-13: 9781292025988
- ISBN-10: 1292025980
- Artikelnr.: 70028911
- Verlag: Pearson Education Limited
- 3 ed
- Seitenzahl: 648
- Erscheinungstermin: 26. Juli 2013
- Englisch
- Abmessung: 216mm x 277mm x 27mm
- Gewicht: 1550g
- ISBN-13: 9781292025988
- ISBN-10: 1292025980
- Artikelnr.: 70028911
Preface
1 FUNDAMENTAL CONCEPTS
1.1 Continuous-Time Signals
1.2 Discrete-Time Signals
1.3 Systems
1.4 Examples of Systems
1.5 Basic System Properties
1.6 Chapter Summary
Problems
2 TIME-DOMAIN MODELS OF SYSTEMS
2.1 Input/Output Representation of Discrete-Time Systems
2.2 Convolution of Discrete-Time Signals
2.3 Difference Equation Models
2.4 Differential Equation Models
2.5 Solution of Differential Equations
2.6 Convolution Representation of Continuous-Time Systems
2.7 Chapter Summary
Problems
3 THE FOURIER SERIES AND FOURIER TRANSFORM
3.1 Representation of Signals in Terms of Frequency Components
3.2 Trigonometric Fourier Series
3.3 Complex Exponential Series
3.4 Fourier Transform
3.5 Spectral Content of Common Signals
3.6 Properties of the Fourier Transform
3.7 Generalized Fourier Transform
3.8 Application to Signal Modulation and Demodulation
3.9 Chapter Summary
Problems
4 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS
4.1 Discrete-Time Fourier Transform
4.2 Discrete Fourier Transform
4.3 DFT of Truncated Signals
4.4 FFT Algorithm
4.5 Application to Data Analysis
4.6 Chapter Summary
Problems
5 FOURIER ANALYSIS OF SYSTEMS
5.1 Fourier Analysis of Continuous-Time Systems
5.2 Response to Periodic and Nonperiodic Inputs
5.3 Analysis of Ideal Filters
5.4 Sampling
5.5 Fourier Analysis of Discrete-Time Systems
5.6 Application to Lowpass Digital Filtering
5.7 Chapter Summary
Problems
6 THE LAPLACE TRANSFORM AND THE TRANSFER FUNCTION REPRESENTATION
6.1 Laplace Transform of a Signal
6.2 Properties of the Laplace Transform
6.3 Computation of the Inverse Laplace Transform
6.4 Transform of the Input/Output Differential Equation
6.5 Transform of the Input/Output Convolution Integral
6.6 Direct Construction of the Transfer Function
6.7 Chapter Summary
Problems
7 THE z-TRANSFORM AND DISCRETE-TIME SYSTEMS
7.1 z-Transform of a Discrete-Time Signal
7.2 Properties of the z-Transform
7.3 Computation of the Inverse z-Transform
7.4 Transfer Function Representation
7.5 System Analysis Using the Transfer Function Representation
7.6 Chapter Summary
Problems
8 ANALYSIS OF CONTINUOUS-TIME SYSTEMS USING THE TRANSFER FUNCTION
REPRESENTATION
8.1 Stability and the Impulse Response
8.2 Routh—Hurwitz Stability Test
8.3 Analysis of the Step Response
8.4 Response to Sinusoids and Arbitrary Inputs
8.5 Frequency Response Function
8.6 Causal Filters
8.7 Chapter Summary
Problems
9 APPLICATION TO CONTROL
9.1 Introduction to Control
9.2 Tracking Control
9.3 Root Locus&nb
1 FUNDAMENTAL CONCEPTS
1.1 Continuous-Time Signals
1.2 Discrete-Time Signals
1.3 Systems
1.4 Examples of Systems
1.5 Basic System Properties
1.6 Chapter Summary
Problems
2 TIME-DOMAIN MODELS OF SYSTEMS
2.1 Input/Output Representation of Discrete-Time Systems
2.2 Convolution of Discrete-Time Signals
2.3 Difference Equation Models
2.4 Differential Equation Models
2.5 Solution of Differential Equations
2.6 Convolution Representation of Continuous-Time Systems
2.7 Chapter Summary
Problems
3 THE FOURIER SERIES AND FOURIER TRANSFORM
3.1 Representation of Signals in Terms of Frequency Components
3.2 Trigonometric Fourier Series
3.3 Complex Exponential Series
3.4 Fourier Transform
3.5 Spectral Content of Common Signals
3.6 Properties of the Fourier Transform
3.7 Generalized Fourier Transform
3.8 Application to Signal Modulation and Demodulation
3.9 Chapter Summary
Problems
4 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS
4.1 Discrete-Time Fourier Transform
4.2 Discrete Fourier Transform
4.3 DFT of Truncated Signals
4.4 FFT Algorithm
4.5 Application to Data Analysis
4.6 Chapter Summary
Problems
5 FOURIER ANALYSIS OF SYSTEMS
5.1 Fourier Analysis of Continuous-Time Systems
5.2 Response to Periodic and Nonperiodic Inputs
5.3 Analysis of Ideal Filters
5.4 Sampling
5.5 Fourier Analysis of Discrete-Time Systems
5.6 Application to Lowpass Digital Filtering
5.7 Chapter Summary
Problems
6 THE LAPLACE TRANSFORM AND THE TRANSFER FUNCTION REPRESENTATION
6.1 Laplace Transform of a Signal
6.2 Properties of the Laplace Transform
6.3 Computation of the Inverse Laplace Transform
6.4 Transform of the Input/Output Differential Equation
6.5 Transform of the Input/Output Convolution Integral
6.6 Direct Construction of the Transfer Function
6.7 Chapter Summary
Problems
7 THE z-TRANSFORM AND DISCRETE-TIME SYSTEMS
7.1 z-Transform of a Discrete-Time Signal
7.2 Properties of the z-Transform
7.3 Computation of the Inverse z-Transform
7.4 Transfer Function Representation
7.5 System Analysis Using the Transfer Function Representation
7.6 Chapter Summary
Problems
8 ANALYSIS OF CONTINUOUS-TIME SYSTEMS USING THE TRANSFER FUNCTION
REPRESENTATION
8.1 Stability and the Impulse Response
8.2 Routh—Hurwitz Stability Test
8.3 Analysis of the Step Response
8.4 Response to Sinusoids and Arbitrary Inputs
8.5 Frequency Response Function
8.6 Causal Filters
8.7 Chapter Summary
Problems
9 APPLICATION TO CONTROL
9.1 Introduction to Control
9.2 Tracking Control
9.3 Root Locus&nb
Preface
1 FUNDAMENTAL CONCEPTS
1.1 Continuous-Time Signals
1.2 Discrete-Time Signals
1.3 Systems
1.4 Examples of Systems
1.5 Basic System Properties
1.6 Chapter Summary
Problems
2 TIME-DOMAIN MODELS OF SYSTEMS
2.1 Input/Output Representation of Discrete-Time Systems
2.2 Convolution of Discrete-Time Signals
2.3 Difference Equation Models
2.4 Differential Equation Models
2.5 Solution of Differential Equations
2.6 Convolution Representation of Continuous-Time Systems
2.7 Chapter Summary
Problems
3 THE FOURIER SERIES AND FOURIER TRANSFORM
3.1 Representation of Signals in Terms of Frequency Components
3.2 Trigonometric Fourier Series
3.3 Complex Exponential Series
3.4 Fourier Transform
3.5 Spectral Content of Common Signals
3.6 Properties of the Fourier Transform
3.7 Generalized Fourier Transform
3.8 Application to Signal Modulation and Demodulation
3.9 Chapter Summary
Problems
4 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS
4.1 Discrete-Time Fourier Transform
4.2 Discrete Fourier Transform
4.3 DFT of Truncated Signals
4.4 FFT Algorithm
4.5 Application to Data Analysis
4.6 Chapter Summary
Problems
5 FOURIER ANALYSIS OF SYSTEMS
5.1 Fourier Analysis of Continuous-Time Systems
5.2 Response to Periodic and Nonperiodic Inputs
5.3 Analysis of Ideal Filters
5.4 Sampling
5.5 Fourier Analysis of Discrete-Time Systems
5.6 Application to Lowpass Digital Filtering
5.7 Chapter Summary
Problems
6 THE LAPLACE TRANSFORM AND THE TRANSFER FUNCTION REPRESENTATION
6.1 Laplace Transform of a Signal
6.2 Properties of the Laplace Transform
6.3 Computation of the Inverse Laplace Transform
6.4 Transform of the Input/Output Differential Equation
6.5 Transform of the Input/Output Convolution Integral
6.6 Direct Construction of the Transfer Function
6.7 Chapter Summary
Problems
7 THE z-TRANSFORM AND DISCRETE-TIME SYSTEMS
7.1 z-Transform of a Discrete-Time Signal
7.2 Properties of the z-Transform
7.3 Computation of the Inverse z-Transform
7.4 Transfer Function Representation
7.5 System Analysis Using the Transfer Function Representation
7.6 Chapter Summary
Problems
8 ANALYSIS OF CONTINUOUS-TIME SYSTEMS USING THE TRANSFER FUNCTION
REPRESENTATION
8.1 Stability and the Impulse Response
8.2 Routh—Hurwitz Stability Test
8.3 Analysis of the Step Response
8.4 Response to Sinusoids and Arbitrary Inputs
8.5 Frequency Response Function
8.6 Causal Filters
8.7 Chapter Summary
Problems
9 APPLICATION TO CONTROL
9.1 Introduction to Control
9.2 Tracking Control
9.3 Root Locus&nb
1 FUNDAMENTAL CONCEPTS
1.1 Continuous-Time Signals
1.2 Discrete-Time Signals
1.3 Systems
1.4 Examples of Systems
1.5 Basic System Properties
1.6 Chapter Summary
Problems
2 TIME-DOMAIN MODELS OF SYSTEMS
2.1 Input/Output Representation of Discrete-Time Systems
2.2 Convolution of Discrete-Time Signals
2.3 Difference Equation Models
2.4 Differential Equation Models
2.5 Solution of Differential Equations
2.6 Convolution Representation of Continuous-Time Systems
2.7 Chapter Summary
Problems
3 THE FOURIER SERIES AND FOURIER TRANSFORM
3.1 Representation of Signals in Terms of Frequency Components
3.2 Trigonometric Fourier Series
3.3 Complex Exponential Series
3.4 Fourier Transform
3.5 Spectral Content of Common Signals
3.6 Properties of the Fourier Transform
3.7 Generalized Fourier Transform
3.8 Application to Signal Modulation and Demodulation
3.9 Chapter Summary
Problems
4 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS
4.1 Discrete-Time Fourier Transform
4.2 Discrete Fourier Transform
4.3 DFT of Truncated Signals
4.4 FFT Algorithm
4.5 Application to Data Analysis
4.6 Chapter Summary
Problems
5 FOURIER ANALYSIS OF SYSTEMS
5.1 Fourier Analysis of Continuous-Time Systems
5.2 Response to Periodic and Nonperiodic Inputs
5.3 Analysis of Ideal Filters
5.4 Sampling
5.5 Fourier Analysis of Discrete-Time Systems
5.6 Application to Lowpass Digital Filtering
5.7 Chapter Summary
Problems
6 THE LAPLACE TRANSFORM AND THE TRANSFER FUNCTION REPRESENTATION
6.1 Laplace Transform of a Signal
6.2 Properties of the Laplace Transform
6.3 Computation of the Inverse Laplace Transform
6.4 Transform of the Input/Output Differential Equation
6.5 Transform of the Input/Output Convolution Integral
6.6 Direct Construction of the Transfer Function
6.7 Chapter Summary
Problems
7 THE z-TRANSFORM AND DISCRETE-TIME SYSTEMS
7.1 z-Transform of a Discrete-Time Signal
7.2 Properties of the z-Transform
7.3 Computation of the Inverse z-Transform
7.4 Transfer Function Representation
7.5 System Analysis Using the Transfer Function Representation
7.6 Chapter Summary
Problems
8 ANALYSIS OF CONTINUOUS-TIME SYSTEMS USING THE TRANSFER FUNCTION
REPRESENTATION
8.1 Stability and the Impulse Response
8.2 Routh—Hurwitz Stability Test
8.3 Analysis of the Step Response
8.4 Response to Sinusoids and Arbitrary Inputs
8.5 Frequency Response Function
8.6 Causal Filters
8.7 Chapter Summary
Problems
9 APPLICATION TO CONTROL
9.1 Introduction to Control
9.2 Tracking Control
9.3 Root Locus&nb