- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Fuzzy set theory deals with sets or categories whose boundaries are blurry or, in other words, 'fuzzy.' This book presents an introduction to fuzzy set theory, focusing on its applicability to the social sciences. It provides a guide for researchers wishing to combine fuzzy set theory with standard statistical techniques and model-testing.
Andere Kunden interessierten sich auch für
- Wes BonifayMultidimensional Item Response Theory51,99 €
- Remo OstiniPolytomous Item Response Theory Models45,99 €
- Michael SmithsonGeneralized Linear Models for Bounded and Limited Quantitative Variables48,99 €
- Lingxin HaoQuantile Regression47,99 €
- Vijay MahajanModels for Innovation Diffusion46,99 €
- Charles C. RaginRedesigning Social Inquiry - Fuzzy Sets and Beyond33,99 €
- Bruno Castanho SilvaMultilevel Structural Equation Modeling46,99 €
-
-
-
Fuzzy set theory deals with sets or categories whose boundaries are blurry or, in other words, 'fuzzy.' This book presents an introduction to fuzzy set theory, focusing on its applicability to the social sciences. It provides a guide for researchers wishing to combine fuzzy set theory with standard statistical techniques and model-testing.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Quantitative Applications in the Social Sciences
- Verlag: SAGE Publications Inc
- Seitenzahl: 110
- Erscheinungstermin: 17. Februar 2006
- Englisch
- Abmessung: 216mm x 140mm x 6mm
- Gewicht: 136g
- ISBN-13: 9780761929864
- ISBN-10: 076192986X
- Artikelnr.: 21812261
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Quantitative Applications in the Social Sciences
- Verlag: SAGE Publications Inc
- Seitenzahl: 110
- Erscheinungstermin: 17. Februar 2006
- Englisch
- Abmessung: 216mm x 140mm x 6mm
- Gewicht: 136g
- ISBN-13: 9780761929864
- ISBN-10: 076192986X
- Artikelnr.: 21812261
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Michael Smithson is a Professor in the Research School of Psychology at The Australian National University in Canberra, and received his PhD from the University of Oregon. He is the author of Confidence Intervals (2003), Statistics with Confidence (2000), Ignorance and Uncertainty (1989), and Fuzzy Set Analysis for the Behavioral and Social Sciences (1987), co-author of Fuzzy Set Theory: Applications in the Social Sciences (2006) and Generalized Linear Models for Categorical and Limited Dependent Variables (2014), and co-editor of Uncertainty and Risk: Multidisciplinary Perspectives (2008) and Resolving Social Dilemmas: Dynamic, Structural, and Intergroup Aspects (1999). His other publications include more than 170 refereed journal articles and book chapters. His primary research interests are in judgment and decision making under ignorance and uncertainty, statistical methods for the social sciences, and applications of fuzzy set theory to the social sciences.
Series Editor's Introduction
Acknowledgments
1. Introduction
2. An Overview of Fuzzy Set Mathematics
2.1 Set Theory
2.2 Why Fuzzy Sets?
2.3 The Membership Function
2.4 Operations of Fuzzy Set Theory
2.5 Fuzzy Numbers and Fuzzy Variables
2.6 Graphical Representations of Fuzzy Sets
3. Measuring Membership
3.1 Introduction
3.2 Methods for Constructing Membership Functions
3.3 Measurement Properties Required for Fuzzy Sets
3.4 Measurement Properties of Membership Functions
3.5 Uncertainty Estimates in Membership Assignment
4. Internal Structure and Properties of a Fuzzy Set
4.1 Cardinality: The Size of a Fuzzy Set
4.2 Probability Distributions for Fuzzy Sets
4.3 Defining and Measuring Fuzziness
5. Simple Relations Between Fuzzy Sets
5.1 Intersection, Union, and Inclusion
5.2 Detecting and Evaluating Fuzzy Inclusion
5.3 Quantifying and Modeling Inclusion: Ordinal Membership Scales
5.4 Quantified and Comparable Membership Scales
6. Multivariate Fuzzy Set Relations
6.1 Compound Set Indexes
6.2 Multiset Relations: Comorbidity, Covariation, and Co-Occurrence
6.3 Multiple and Partial Intersection and Inclusion
7. Concluding Remarks
References
Index
About the Authors
Acknowledgments
1. Introduction
2. An Overview of Fuzzy Set Mathematics
2.1 Set Theory
2.2 Why Fuzzy Sets?
2.3 The Membership Function
2.4 Operations of Fuzzy Set Theory
2.5 Fuzzy Numbers and Fuzzy Variables
2.6 Graphical Representations of Fuzzy Sets
3. Measuring Membership
3.1 Introduction
3.2 Methods for Constructing Membership Functions
3.3 Measurement Properties Required for Fuzzy Sets
3.4 Measurement Properties of Membership Functions
3.5 Uncertainty Estimates in Membership Assignment
4. Internal Structure and Properties of a Fuzzy Set
4.1 Cardinality: The Size of a Fuzzy Set
4.2 Probability Distributions for Fuzzy Sets
4.3 Defining and Measuring Fuzziness
5. Simple Relations Between Fuzzy Sets
5.1 Intersection, Union, and Inclusion
5.2 Detecting and Evaluating Fuzzy Inclusion
5.3 Quantifying and Modeling Inclusion: Ordinal Membership Scales
5.4 Quantified and Comparable Membership Scales
6. Multivariate Fuzzy Set Relations
6.1 Compound Set Indexes
6.2 Multiset Relations: Comorbidity, Covariation, and Co-Occurrence
6.3 Multiple and Partial Intersection and Inclusion
7. Concluding Remarks
References
Index
About the Authors
Series Editor's Introduction
Acknowledgments
1. Introduction
2. An Overview of Fuzzy Set Mathematics
2.1 Set Theory
2.2 Why Fuzzy Sets?
2.3 The Membership Function
2.4 Operations of Fuzzy Set Theory
2.5 Fuzzy Numbers and Fuzzy Variables
2.6 Graphical Representations of Fuzzy Sets
3. Measuring Membership
3.1 Introduction
3.2 Methods for Constructing Membership Functions
3.3 Measurement Properties Required for Fuzzy Sets
3.4 Measurement Properties of Membership Functions
3.5 Uncertainty Estimates in Membership Assignment
4. Internal Structure and Properties of a Fuzzy Set
4.1 Cardinality: The Size of a Fuzzy Set
4.2 Probability Distributions for Fuzzy Sets
4.3 Defining and Measuring Fuzziness
5. Simple Relations Between Fuzzy Sets
5.1 Intersection, Union, and Inclusion
5.2 Detecting and Evaluating Fuzzy Inclusion
5.3 Quantifying and Modeling Inclusion: Ordinal Membership Scales
5.4 Quantified and Comparable Membership Scales
6. Multivariate Fuzzy Set Relations
6.1 Compound Set Indexes
6.2 Multiset Relations: Comorbidity, Covariation, and Co-Occurrence
6.3 Multiple and Partial Intersection and Inclusion
7. Concluding Remarks
References
Index
About the Authors
Acknowledgments
1. Introduction
2. An Overview of Fuzzy Set Mathematics
2.1 Set Theory
2.2 Why Fuzzy Sets?
2.3 The Membership Function
2.4 Operations of Fuzzy Set Theory
2.5 Fuzzy Numbers and Fuzzy Variables
2.6 Graphical Representations of Fuzzy Sets
3. Measuring Membership
3.1 Introduction
3.2 Methods for Constructing Membership Functions
3.3 Measurement Properties Required for Fuzzy Sets
3.4 Measurement Properties of Membership Functions
3.5 Uncertainty Estimates in Membership Assignment
4. Internal Structure and Properties of a Fuzzy Set
4.1 Cardinality: The Size of a Fuzzy Set
4.2 Probability Distributions for Fuzzy Sets
4.3 Defining and Measuring Fuzziness
5. Simple Relations Between Fuzzy Sets
5.1 Intersection, Union, and Inclusion
5.2 Detecting and Evaluating Fuzzy Inclusion
5.3 Quantifying and Modeling Inclusion: Ordinal Membership Scales
5.4 Quantified and Comparable Membership Scales
6. Multivariate Fuzzy Set Relations
6.1 Compound Set Indexes
6.2 Multiset Relations: Comorbidity, Covariation, and Co-Occurrence
6.3 Multiple and Partial Intersection and Inclusion
7. Concluding Remarks
References
Index
About the Authors