Fuzzy Sets, Logics and Reasoning about Knowledge reports recent results concerning the genuinely logical aspects of fuzzy sets in relation to algebraic considerations, knowledge representation and commonsense reasoning. It takes a state-of-the-art look at multiple-valued and fuzzy set-based logics, in an artificial intelligence perspective. The papers, all of which are written by leading contributors in their respective fields, are grouped into four sections.
The first section presents a panorama of many-valued logics in connection with fuzzy sets. The second explores algebraic foundations, with an emphasis on MV algebras. The third is devoted to approximate reasoning methods and similarity-based reasoning. The fourth explores connections between fuzzy knowledge representation, especially possibilistic logic and prioritized knowledge bases.
Readership: Scholars and graduate students in logic, algebra, knowledge representation, and formal aspects of artificial intelligence.
The first section presents a panorama of many-valued logics in connection with fuzzy sets. The second explores algebraic foundations, with an emphasis on MV algebras. The third is devoted to approximate reasoning methods and similarity-based reasoning. The fourth explores connections between fuzzy knowledge representation, especially possibilistic logic and prioritized knowledge bases.
Readership: Scholars and graduate students in logic, algebra, knowledge representation, and formal aspects of artificial intelligence.