Games, Scales and Suslin Cardinals
Herausgeber: Kechris, Alexander S.; Steel, John R.; Löwe, Benedikt
Games, Scales and Suslin Cardinals
Herausgeber: Kechris, Alexander S.; Steel, John R.; Löwe, Benedikt
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Presents seminal papers from the Caltech-UCLA 'Cabal Seminar', unpublished material, and related new papers.
Andere Kunden interessierten sich auch für
- Iain AdamsonA Set Theory Workbook42,99 €
- Mohamed BekkaliTopics in Set Theory21,99 €
- Dirk van DalenSets and integration An outline of the development42,99 €
- James M. HenleAn Outline of Set Theory42,99 €
- Thomas JechSet Theory168,99 €
- Akihiro KanamoriThe Higher Infinite103,99 €
- Peter KomjathProblems and Theorems in Classical Set Theory57,99 €
-
-
-
Presents seminal papers from the Caltech-UCLA 'Cabal Seminar', unpublished material, and related new papers.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 460
- Erscheinungstermin: 15. September 2008
- Englisch
- Abmessung: 235mm x 157mm x 31mm
- Gewicht: 894g
- ISBN-13: 9780521899512
- ISBN-10: 0521899516
- Artikelnr.: 23605386
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 460
- Erscheinungstermin: 15. September 2008
- Englisch
- Abmessung: 235mm x 157mm x 31mm
- Gewicht: 894g
- ISBN-13: 9780521899512
- ISBN-10: 0521899516
- Artikelnr.: 23605386
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Part I. Games and Scales: 1. Games and scales
Introduction to Part I John R. Steel
2. Notes on the theory of scales Alexander S. Kechris and Yiannis N. Moschovakis
3. Propagation of the scale property using games Itay Neeman
4. Scales on E-sets John R. Steel
5. Inductive scales on inductive sets Yiannis N. Moschovakis
6. The extent of scales in L(R) Donald A. Martin and John R. Steel
7. The largest countable this, that, and the other Donald A. Martin
8. Scales in L(R) John R. Steel
9. Scales in K(R) John R. Steel
10. The real game quantifier propagates scales Donald A. Martin
11. Long games John R. Steel
12. The length-w1 open game quantifier propagates scales John R. Steel
Part II. Suslin Cardinals, Partition Properties, Homogeneity: 13. Suslin cardinals, partition properties, homogeneity
Introduction to Part II Steve Jackson
14. Suslin cardinals, K-suslin sets and the scale property in the hyperprojective hierarchy Alexander S. Kechris
15. The axiom of determinacy, strong partition properties and nonsingular measures Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis and W. Hugh Woodin
16. The equivalence of partition properties and determinacy Alexander S. Kechris
17. Generic codes for uncountable ordinals, partition properties, and elementary embeddings Alexander S. Kechris and W. Hugh Woodin
18. A coding theorem for measures Alexander S. Kechris
19. The tree of a Moschovakis scale is homogeneous Donald A. Martin and John R. Steel
20. Weakly homogeneous trees Donald A. Martin and W. Hugh Woodin.
Introduction to Part I John R. Steel
2. Notes on the theory of scales Alexander S. Kechris and Yiannis N. Moschovakis
3. Propagation of the scale property using games Itay Neeman
4. Scales on E-sets John R. Steel
5. Inductive scales on inductive sets Yiannis N. Moschovakis
6. The extent of scales in L(R) Donald A. Martin and John R. Steel
7. The largest countable this, that, and the other Donald A. Martin
8. Scales in L(R) John R. Steel
9. Scales in K(R) John R. Steel
10. The real game quantifier propagates scales Donald A. Martin
11. Long games John R. Steel
12. The length-w1 open game quantifier propagates scales John R. Steel
Part II. Suslin Cardinals, Partition Properties, Homogeneity: 13. Suslin cardinals, partition properties, homogeneity
Introduction to Part II Steve Jackson
14. Suslin cardinals, K-suslin sets and the scale property in the hyperprojective hierarchy Alexander S. Kechris
15. The axiom of determinacy, strong partition properties and nonsingular measures Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis and W. Hugh Woodin
16. The equivalence of partition properties and determinacy Alexander S. Kechris
17. Generic codes for uncountable ordinals, partition properties, and elementary embeddings Alexander S. Kechris and W. Hugh Woodin
18. A coding theorem for measures Alexander S. Kechris
19. The tree of a Moschovakis scale is homogeneous Donald A. Martin and John R. Steel
20. Weakly homogeneous trees Donald A. Martin and W. Hugh Woodin.
Part I. Games and Scales: 1. Games and scales
Introduction to Part I John R. Steel
2. Notes on the theory of scales Alexander S. Kechris and Yiannis N. Moschovakis
3. Propagation of the scale property using games Itay Neeman
4. Scales on E-sets John R. Steel
5. Inductive scales on inductive sets Yiannis N. Moschovakis
6. The extent of scales in L(R) Donald A. Martin and John R. Steel
7. The largest countable this, that, and the other Donald A. Martin
8. Scales in L(R) John R. Steel
9. Scales in K(R) John R. Steel
10. The real game quantifier propagates scales Donald A. Martin
11. Long games John R. Steel
12. The length-w1 open game quantifier propagates scales John R. Steel
Part II. Suslin Cardinals, Partition Properties, Homogeneity: 13. Suslin cardinals, partition properties, homogeneity
Introduction to Part II Steve Jackson
14. Suslin cardinals, K-suslin sets and the scale property in the hyperprojective hierarchy Alexander S. Kechris
15. The axiom of determinacy, strong partition properties and nonsingular measures Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis and W. Hugh Woodin
16. The equivalence of partition properties and determinacy Alexander S. Kechris
17. Generic codes for uncountable ordinals, partition properties, and elementary embeddings Alexander S. Kechris and W. Hugh Woodin
18. A coding theorem for measures Alexander S. Kechris
19. The tree of a Moschovakis scale is homogeneous Donald A. Martin and John R. Steel
20. Weakly homogeneous trees Donald A. Martin and W. Hugh Woodin.
Introduction to Part I John R. Steel
2. Notes on the theory of scales Alexander S. Kechris and Yiannis N. Moschovakis
3. Propagation of the scale property using games Itay Neeman
4. Scales on E-sets John R. Steel
5. Inductive scales on inductive sets Yiannis N. Moschovakis
6. The extent of scales in L(R) Donald A. Martin and John R. Steel
7. The largest countable this, that, and the other Donald A. Martin
8. Scales in L(R) John R. Steel
9. Scales in K(R) John R. Steel
10. The real game quantifier propagates scales Donald A. Martin
11. Long games John R. Steel
12. The length-w1 open game quantifier propagates scales John R. Steel
Part II. Suslin Cardinals, Partition Properties, Homogeneity: 13. Suslin cardinals, partition properties, homogeneity
Introduction to Part II Steve Jackson
14. Suslin cardinals, K-suslin sets and the scale property in the hyperprojective hierarchy Alexander S. Kechris
15. The axiom of determinacy, strong partition properties and nonsingular measures Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis and W. Hugh Woodin
16. The equivalence of partition properties and determinacy Alexander S. Kechris
17. Generic codes for uncountable ordinals, partition properties, and elementary embeddings Alexander S. Kechris and W. Hugh Woodin
18. A coding theorem for measures Alexander S. Kechris
19. The tree of a Moschovakis scale is homogeneous Donald A. Martin and John R. Steel
20. Weakly homogeneous trees Donald A. Martin and W. Hugh Woodin.