217,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
109 °P sammeln
  • Broschiertes Buch

Since the first gap junction protein (connexin) was cloned over a decade ago, more than a dozen connexin genes have been cloned. Consequently, a wealth of information on the molecular basis of gap junctional communication has been accumulated. This book pays tribute to this exciting era in the history of cell communication research by documenting the great strides made in this field as a result of the merging of biophysics and molecular biology, two of the most powerful approaches to studying the molecular basis of membrane channel behavior. Twenty-eight comprehensive chapters, authored by…mehr

Produktbeschreibung
Since the first gap junction protein (connexin) was cloned over a decade ago, more than a dozen connexin genes have been cloned. Consequently, a wealth of information on the molecular basis of gap junctional communication has been accumulated. This book pays tribute to this exciting era in the history of cell communication research by documenting the great strides made in this field as a result of the merging of biophysics and molecular biology, two of the most powerful approaches to studying the molecular basis of membrane channel behavior. Twenty-eight comprehensive chapters, authored by internationally recognized leaders in the field, discuss the biophysical, physiological, and molecular characteristics of cell-to-cell communication via gap junctions. Key aspects of molecular structure, formation, gating, conductance, and permeability of vertebrate and invertebrate gap junction channels are highlighted. In addition, a number of chapters focus on recent discoveries that implicate connexin mutations and alterations of gap junctional communication in the pathogenesis of several diseases, including the X-linked Charcot-Marie-Tooth demyelinating disease, some forms of inherited sensorineural deafness, malignant transformation, cardiac malformations and arrhythmia, eye lens cataract, and Chagas disease.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Camillo Peracchia is a Professor Emeritus of Physiology and Pharmacology at the University of Rochester, School of Medicine. His research has focused on the structure and chemical regulation of cell-to-cell communication via gap junction channels and on the direct role of calmodulin in gap junction channel gating. Continuously funded by NIH for almost four decades, he has published over a hundred papers, authored a book and edited three others. He was an invited speaker at over forty international congresses and symposia, and has been Associate Editor of the Journal of Neurocytology. In 1994 he was elected Honorary Member of the "Societá di Medicina e Scienze Naturali? (University of Parma, Italy). He has served as Regular Member of the Cell Biology and Physiology Study Section (CBY-1, NIH, 1990-94), and is a National Reviewers Reserve (NIH, 1994-present). He is a member of the American Society for Cell Biology and the Biophysical Society. In March 2017 he received a Lifetime Achi

evement Award from Marquis Who's Who. He has taught Respiratory Physiology to medical students and Cell Biology to graduate students. In recognition of his teaching activity, he was awarded the Manuel D. Goldman Prize (1998), the Edward F. Adolph Medal (2004), and five commendations (1995, 1996, 1999, 2002, 2005).