The field of gas phase inorganic ion chemistry is relatively new; the early studies date back approximately twenty years, but there has been intense interest and development in the field in the last ten years. As with much of modern chemistry, the growth in gas phase inorganic ion chemistry can be traced to the development of instrumentation and new experimental methods. Studies in this area require sophisticated instruments and sample introduc tion/ ionization methods, and often these processes are complicated by the need for state-selecting (or collisionally stabilizing) the reactive…mehr
The field of gas phase inorganic ion chemistry is relatively new; the early studies date back approximately twenty years, but there has been intense interest and development in the field in the last ten years. As with much of modern chemistry, the growth in gas phase inorganic ion chemistry can be traced to the development of instrumentation and new experimental methods. Studies in this area require sophisticated instruments and sample introduc tion/ ionization methods, and often these processes are complicated by the need for state-selecting (or collisionally stabilizing) the reactive species in order to assign the chemistry unequivocally. At the present level of experimental development, a wide range of experiments on diverse ionic systems are possible and many detailed aspects of the chemistry can be studied. Gas Phase Inorganic Chemistry focuses on the reactions of metal ions and metal clusters, and on the study of these species using the available modern spectroscopic methods. Three of the twelve chapters cover the chemistry of ionic monometal transition metal ions and the chemistry of these species with small diatomics and model organics. Two of the chapters focus on the studies of the chemical and physical properties of (primarily) transition metal clusters, and these chapters review experimental methods and capabilities. Two chapters also deal with the chemistry of transition metal carbonyl clusters, and these chapters address issues important to cluster growth and activation as well as the characterization of such species.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1 Reactions of Atomic Metal Ions with H2, CH2, and C2H6: Electronic Requirements for H H, C H, and C C Bond Activation.- 1. Introduction.- 1.1. Relation between Gas Phase and Condensed Phase.- 1.2. Electronic Requirements for Alkane Activation.- 1.3. State-Specific Chemistry.- 2. Ior Beam Techniques.- 2.1. Ion Sources.- 2.2. Experimental Considerations.- 2.3. Energy Behavior of Ion-Molecule Reactions.- 2.4. Comparison to ICR (FTMS) Techniques.- 3. Thermochemistry.- 3.1. From Endothermicities to Bond Energies.- 3.2. Ionic Metal Hydrides.- 3.3. Ionic Metal Methyls.- 3.4. Ionic MR2: R=H, CH3.- 3.5. Neutral Metal Methyls.- 3.6. Ionic Metal Methylidenes and Methylidynes.- 4. Reactions with Dihydrogen.- 4.1. Molecular Orbital Considerations.- 4.2. Spin Considerations.- 4.3. Periodic Trends in Reactivity.- 5. Reactions with Methane.- 5.1. Sc+ + CH4.- 5.2. Reaction Mechanism.- 5.3. Ti+, V+ + CH4.- 5.4. Cr+ + CH4.- 5.5. Fe+ + CH4.- 6. Reactions with Ethane.- 6.1. V+ + C2H6.- 6.2. Sc+ + C2H6.- 6.3. Fe+ + C2H6.- 6.4. Fe+ + C3H8.- 6.5. Zn+ + C2H6.- 7. Summary.- 7.1. Thermochemistry.- 7.2. Reactions with Dihydrogen.- 7.3. Reactions with Methane.- 7.4. Reactions with Ethane.- 7.5. Outlook.- References.- 2 Nucleophilic Addition Reactions of Negative Ions with Organometallic Complexes in the Gas Phase.- 1. Introduction.- 1.1. Nucleophilic Addition in Organometallic Chemistry.- 1.2. Previous Gas Phase Studies.- 2. The Flowing Afterglow Method.- 3. Mononuclear Transition Metal Carbonyls.- 3.1. Fe(CO)5.- 3.2. Group 5 and Group 6 Hexacarbonyls, M(CO)6 (M = V, Cr, Mo, W).- 3.3. Reactions with Partially Solvated Nucleophiles.- 4. Transition Metal Arene, Cyclopentadienyl, and Diene Complexes.- 4.1. (?6-C6H6)Cr(CO)3.- 4.2. (?5-C5H5)Mn(CO)3.- 4.3. Isomeric (C4H6)Fe(CO)3 Complexes.- 5. Catalysis Intermediates.- 5.1. Hydroxycarbonyl Complexes and the Homogeneously Catalyzed Water-Gas Shift Reaction.- 5.2. Hydride Transfer Reactions: Thermochemistry for Transition Metal Formyl Ions.- 6. Concluding Remarks.- References.- 3 Reactions in Ionized Metal Carbonyls: Clustering and Oxidative Addition.- 1. Mass Spectrometry of Metal Carbonyls.- 1.1. Binary Metal Carbonyls.- 1.2. Other Metal Carbonyls.- 1.3. Electronically Excited Fragment Ions.- 1.4. Negative Ion Mass Spectra.- 1.5. Thermochemistry of Fragment Ions.- 2. Clustering Reactions of Metal Carbonyl Ions with Metal Carbonyls.- 2.1. Early Results.- 2.2 Structure-Reactivity Relations in Clustering Reactions: Multiple Bonds in Iron Carbonyl Clusters.- 2.3. Structure-Reactivity Relations in Group 7 Metal Carbonyl Clusters: Large Polyhedral Structures.- 3. Ligand Substitution Reactions.- 4. Oxidative Addition Reactions of Atomic Transition Metal Ions.- 4.1. Reactions with Alkyl Halides and Alcohols.- 4.2. Reactions with Aryl Halides.- 4.3. Reactions with Alkanes.- 4.4. The Effect of Oxidation State: Reactions of Fe+, FeI+, and FeI2+.- 4.5. Reactions of Fe+ with Cycloalkanes: Transition State Geometries.- 5. Reactions of Polynuclear Metal Carbonyl Ions with Alkanes ..- 5.1. Reaction of Diatomic Metal Carbonyl Ions.- 5.2. Reactions of Rhenium Carbonyl Cluster Ions with Cycloalkanes.- References.- 4 Structure-Reactivity Relationships for Ionic Transition Metal Carbonyl Cluster Fragments.- 1. Electron Deficiency Model.- 2. Cluster Valence Molecular Orbital Model.- 3. Bonding of Fe(CO)x in Heterometallic Ionic Cluster Fragments.- 4. Metal-Metal and Metal-Ligand Binding Energies in Ionic Cluster Fragments of Transition Metal Carbonyls.- References.- 5 Metal and Semiconductor Cluster Ions.- 1. Introduction.- 2. Methods for Generating Cluster Ions.- 3. Methods for Studying Cluster Ions.- 4. Carbon Cluster Ions.- 5. Silicon Cluster Ions.- 6. Aluminum Cluster Ions.- 7. Transition Metal Cluster Ions.- 8. Concluding Discussion.- References.- 6 Atomic Clusters in the Gas Phase.- 1. Atomic Cluster Properties and Their Size Dependence.- 1.1. Interest in Atomic Clusters.- 1.2. N-Specific Properties.- 1.3. Theoretical Guidel
1 Reactions of Atomic Metal Ions with H2, CH2, and C2H6: Electronic Requirements for H H, C H, and C C Bond Activation.- 1. Introduction.- 1.1. Relation between Gas Phase and Condensed Phase.- 1.2. Electronic Requirements for Alkane Activation.- 1.3. State-Specific Chemistry.- 2. Ior Beam Techniques.- 2.1. Ion Sources.- 2.2. Experimental Considerations.- 2.3. Energy Behavior of Ion-Molecule Reactions.- 2.4. Comparison to ICR (FTMS) Techniques.- 3. Thermochemistry.- 3.1. From Endothermicities to Bond Energies.- 3.2. Ionic Metal Hydrides.- 3.3. Ionic Metal Methyls.- 3.4. Ionic MR2: R=H, CH3.- 3.5. Neutral Metal Methyls.- 3.6. Ionic Metal Methylidenes and Methylidynes.- 4. Reactions with Dihydrogen.- 4.1. Molecular Orbital Considerations.- 4.2. Spin Considerations.- 4.3. Periodic Trends in Reactivity.- 5. Reactions with Methane.- 5.1. Sc+ + CH4.- 5.2. Reaction Mechanism.- 5.3. Ti+, V+ + CH4.- 5.4. Cr+ + CH4.- 5.5. Fe+ + CH4.- 6. Reactions with Ethane.- 6.1. V+ + C2H6.- 6.2. Sc+ + C2H6.- 6.3. Fe+ + C2H6.- 6.4. Fe+ + C3H8.- 6.5. Zn+ + C2H6.- 7. Summary.- 7.1. Thermochemistry.- 7.2. Reactions with Dihydrogen.- 7.3. Reactions with Methane.- 7.4. Reactions with Ethane.- 7.5. Outlook.- References.- 2 Nucleophilic Addition Reactions of Negative Ions with Organometallic Complexes in the Gas Phase.- 1. Introduction.- 1.1. Nucleophilic Addition in Organometallic Chemistry.- 1.2. Previous Gas Phase Studies.- 2. The Flowing Afterglow Method.- 3. Mononuclear Transition Metal Carbonyls.- 3.1. Fe(CO)5.- 3.2. Group 5 and Group 6 Hexacarbonyls, M(CO)6 (M = V, Cr, Mo, W).- 3.3. Reactions with Partially Solvated Nucleophiles.- 4. Transition Metal Arene, Cyclopentadienyl, and Diene Complexes.- 4.1. (?6-C6H6)Cr(CO)3.- 4.2. (?5-C5H5)Mn(CO)3.- 4.3. Isomeric (C4H6)Fe(CO)3 Complexes.- 5. Catalysis Intermediates.- 5.1. Hydroxycarbonyl Complexes and the Homogeneously Catalyzed Water-Gas Shift Reaction.- 5.2. Hydride Transfer Reactions: Thermochemistry for Transition Metal Formyl Ions.- 6. Concluding Remarks.- References.- 3 Reactions in Ionized Metal Carbonyls: Clustering and Oxidative Addition.- 1. Mass Spectrometry of Metal Carbonyls.- 1.1. Binary Metal Carbonyls.- 1.2. Other Metal Carbonyls.- 1.3. Electronically Excited Fragment Ions.- 1.4. Negative Ion Mass Spectra.- 1.5. Thermochemistry of Fragment Ions.- 2. Clustering Reactions of Metal Carbonyl Ions with Metal Carbonyls.- 2.1. Early Results.- 2.2 Structure-Reactivity Relations in Clustering Reactions: Multiple Bonds in Iron Carbonyl Clusters.- 2.3. Structure-Reactivity Relations in Group 7 Metal Carbonyl Clusters: Large Polyhedral Structures.- 3. Ligand Substitution Reactions.- 4. Oxidative Addition Reactions of Atomic Transition Metal Ions.- 4.1. Reactions with Alkyl Halides and Alcohols.- 4.2. Reactions with Aryl Halides.- 4.3. Reactions with Alkanes.- 4.4. The Effect of Oxidation State: Reactions of Fe+, FeI+, and FeI2+.- 4.5. Reactions of Fe+ with Cycloalkanes: Transition State Geometries.- 5. Reactions of Polynuclear Metal Carbonyl Ions with Alkanes ..- 5.1. Reaction of Diatomic Metal Carbonyl Ions.- 5.2. Reactions of Rhenium Carbonyl Cluster Ions with Cycloalkanes.- References.- 4 Structure-Reactivity Relationships for Ionic Transition Metal Carbonyl Cluster Fragments.- 1. Electron Deficiency Model.- 2. Cluster Valence Molecular Orbital Model.- 3. Bonding of Fe(CO)x in Heterometallic Ionic Cluster Fragments.- 4. Metal-Metal and Metal-Ligand Binding Energies in Ionic Cluster Fragments of Transition Metal Carbonyls.- References.- 5 Metal and Semiconductor Cluster Ions.- 1. Introduction.- 2. Methods for Generating Cluster Ions.- 3. Methods for Studying Cluster Ions.- 4. Carbon Cluster Ions.- 5. Silicon Cluster Ions.- 6. Aluminum Cluster Ions.- 7. Transition Metal Cluster Ions.- 8. Concluding Discussion.- References.- 6 Atomic Clusters in the Gas Phase.- 1. Atomic Cluster Properties and Their Size Dependence.- 1.1. Interest in Atomic Clusters.- 1.2. N-Specific Properties.- 1.3. Theoretical Guidel
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497