Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the…mehr
Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems.With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation.
Produktdetails
Produktdetails
Woodhead Publishing Series in Metals and Surface Engineering
2.2 Principle of thermal desorption spectroscopy (TDS) measurements
2.3 Experimental aspects of thermal desorption spectroscopy (TDS)
2.4 Complementary techniques
2.5 Conclusion
Chapter 3: Analyzing hydrogen in metals: surface techniques
Abstract:
3.1 Introduction
3.2 Available techniques for analyzing hydrogen
3.3 Methods for analyzing hydrogen in metals: basic principles
3.4 Applications of hydrogen analysis methods
3.5 Ion beam-based methods
3.6 Conclusion
Chapter 4: Hydrogen diffusion and trapping in metals
Abstract:
4.1 Introduction: hydrogen uptake
4.2 Solubility of hydrogen in metals
4.3 Principles of hydrogen diffusion and trapping
4.4 Modelling of hydrogen diffusion and trapping
4.5 Measurement of hydrogen diffusion
4.6 Hydrogen diffusion data
4.7 Conclusions
4.8 Acknowledgements
Chapter 5: Control of hydrogen embrittlement of metals by chemical inhibitors and coatings
Abstract:
5.1 Introduction
5.2 Chemical barriers to hydrogen environment embrittlement (HEE): gaseous inhibitors
5.3 Physical barriers to hydrogen environment embrittlement (HEE)
5.4 Conclusions and future trends
Chapter 6: The role of grain boundaries in hydrogen induced cracking (HIC) of steels
Abstract:
6.1 Introduction: modes of cracking
6.2 Impurity effects
6.3 Temper embrittlement and hydrogen
6.4 Tempered-martensite embrittlement and hydrogen
6.5 Future trends
6.6 Conclusions
Chapter 7: Influence of hydrogen on the behavior of dislocations
Abstract:
7.1 Introduction
7.2 Dislocation motion
7.3 Evidence for hydrogen dislocation interactions
7.4 Discussion
7.5 Conclusions
7.6 Acknowledgements
Part II: Modelling hydrogen embrittlement
Chapter 8: Modeling hydrogen induced damage mechanisms in metals
Abstract:
8.1 Introduction
8.2 Pros and cons of proposed mechanisms
8.3 Evolution of decohesion models
8.4 Evolution of shear localization models
8.5 Summary
8.6 Conclusions
8.7 Acknowledgements
Chapter 9: Hydrogen effects on the plasticity of face centred cubic (fcc) crystals
Abstract:
9.1 Introduction and scope
9.2 Study of dynamic interactions and elastic binding by static strain ageing (SSA)
9.3 Modelling in the framework of the elastic theory of discrete dislocations
9.4 Experiments on face centred cubic (fcc) single crystals oriented for single glide
9.5 Review of main conclusions
9.6 Future trends
Chapter 10: Continuum mechanics modeling of hydrogen embrittlement
Abstract:
10.1 Introduction
10.2 Basic concepts
10.3 Crack tip fields: asymptotic elastic and plastic solutions
10.4 Crack tip fields: finite deformation blunting predictions
10.5 Application of crack tip fields and additional considerations
10.6 Stresses around dislocations and inclusions
10.7 Conclusions
10.8 Acknowledgement
Chapter 11: Degradation models for hydrogen embrittlement
Abstract:
11.1 Introduction
11.2 Subcritical intergranular cracking under gaseous hydrogen uptake
11.3 Subcritical ductile cracking: g
Rezensionen
"This book is a worthwhile purchase for anybody with a serious interest in the area of hydrogen embrittlement. It is a valuable reference for scientists and engineers alike, whether they are university students or experienced professionals." --Materials World
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826