Ian J R Aitchison (Univ. of Oxford Prof. Em.), Anthony J.G. Hey (Microsoft Research)
Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2
Non-Abelian Gauge Theories: QCD and The Electroweak Theory, Fifth Edition
Ian J R Aitchison (Univ. of Oxford Prof. Em.), Anthony J.G. Hey (Microsoft Research)
Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2
Non-Abelian Gauge Theories: QCD and The Electroweak Theory, Fifth Edition
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations.
Andere Kunden interessierten sich auch für
- Ian J R AitchisonGauge Theories in Particle Physics: A Practical Introduction, Volume 2: Non-Abelian Gauge Theories98,99 €
- Ian J R Aitchison (Univ. of Oxford Prof. Em.)Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 174,99 €
- Oleg BoyarkinAdvanced Particle Physics Volume II85,99 €
- Andrey GrabovskyIntroduction to Strong Interactions70,99 €
- Georg ViehhauserDetectors in Particle Physics98,99 €
- Oleg BoyarkinAdvanced Particle Physics Volume I98,99 €
- Sean CarrollThe Particle at the End of the Universe15,99 €
-
-
-
The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- 5 ed
- Seitenzahl: 456
- Erscheinungstermin: 19. Juni 2024
- Englisch
- Abmessung: 251mm x 177mm x 24mm
- Gewicht: 978g
- ISBN-13: 9781032533612
- ISBN-10: 1032533617
- Artikelnr.: 69939266
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Taylor & Francis Ltd
- 5 ed
- Seitenzahl: 456
- Erscheinungstermin: 19. Juni 2024
- Englisch
- Abmessung: 251mm x 177mm x 24mm
- Gewicht: 978g
- ISBN-13: 9781032533612
- ISBN-10: 1032533617
- Artikelnr.: 69939266
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Ian J.R. Aitchison is Emeritus Professor of Physics at the University of Oxford. He has previously held research positions at Brookhaven National Laboratory, Saclay, and the University of Cambridge. He was a visiting professor at the University of Rochester and the University of Washington, and a scientific associate at CERN and SLAC. Dr. Aitchison has published over 90 scientific papers mainly on hadronic physics and quantum field theory. He is the author of two books and joint editor of further two. Anthony J.G. Hey is now Honorary Senior Data Scientist at the UK's National Laboratory at Harwell. He began his career with a doctorate in particle physics from the University of Oxford. After a career in particle physics that included a professorship at the University of Southampton and research positions at Caltech, MIT and CERN, he moved to Computer Science and founded a parallel computing research group. The group were one of the pioneers of distributed memory message-passing computers and helped establish the 'MPI' message passing standard. After leaving Southampton in 2001 he was director of the UK's 'eScience' initiative before becoming a Vice-President in Microsoft Research. He returned to the UK in 2015 as Chief Data Scientist at the U.K.'s Rutherford Appleton Laboratory. He then founded a new 'Scientific Machine Learning' group to apply AI technologies to the 'Big Scientific Data' generated by the Diamond Synchrotron, the ISIS neutron source, and the Central Laser Facility that are located on the Harwell campus. He is the author of over 100 scientific papers on physics and computing and editor of 'The Feynman Lectures on Computation'.
Chapter 12: Global Non-Abelian Symmetries. Chapter 13: Local Non-Abelian
(Gauge) Symmetries. Chapter 14: QCD I: Introduction, Tree Graph
Predictions, and Jets. Chapter 15: QCD II: Asymptotic Freedom, the
Renormalization Group, and Scaling Violations. Chapter 16: Lattice Field
Theory, and the Renormalization Group Revisited. Chapter 17: Spontaneously
Broken Global Symmetry. Chapter 18: Chiral Symmetry Breaking. Chapter 19:
Spontaneously Broken Local Symmetry. Chapter 20: Introduction to the
Phenomenology of Weak Interactions. Chapter 21: CP Violation and
Oscillation Phenomena. Chapter 22: The Glashow-Salam-Weinberg Gauge Theory
of Electroweak Interactions. Chapter 23: Further Developments. Appendix M:
Group Theory. Appendix N: Geometrical Aspects of Gauge Fields. Appendix O:
Dimensional Regularization. Appendix P: Grassmann Variables. Appendix Q:
Feynman Rules for Tree Graphs in QCD and the Electroweak Theory.
References.
(Gauge) Symmetries. Chapter 14: QCD I: Introduction, Tree Graph
Predictions, and Jets. Chapter 15: QCD II: Asymptotic Freedom, the
Renormalization Group, and Scaling Violations. Chapter 16: Lattice Field
Theory, and the Renormalization Group Revisited. Chapter 17: Spontaneously
Broken Global Symmetry. Chapter 18: Chiral Symmetry Breaking. Chapter 19:
Spontaneously Broken Local Symmetry. Chapter 20: Introduction to the
Phenomenology of Weak Interactions. Chapter 21: CP Violation and
Oscillation Phenomena. Chapter 22: The Glashow-Salam-Weinberg Gauge Theory
of Electroweak Interactions. Chapter 23: Further Developments. Appendix M:
Group Theory. Appendix N: Geometrical Aspects of Gauge Fields. Appendix O:
Dimensional Regularization. Appendix P: Grassmann Variables. Appendix Q:
Feynman Rules for Tree Graphs in QCD and the Electroweak Theory.
References.
Chapter 12: Global Non-Abelian Symmetries. Chapter 13: Local Non-Abelian
(Gauge) Symmetries. Chapter 14: QCD I: Introduction, Tree Graph
Predictions, and Jets. Chapter 15: QCD II: Asymptotic Freedom, the
Renormalization Group, and Scaling Violations. Chapter 16: Lattice Field
Theory, and the Renormalization Group Revisited. Chapter 17: Spontaneously
Broken Global Symmetry. Chapter 18: Chiral Symmetry Breaking. Chapter 19:
Spontaneously Broken Local Symmetry. Chapter 20: Introduction to the
Phenomenology of Weak Interactions. Chapter 21: CP Violation and
Oscillation Phenomena. Chapter 22: The Glashow-Salam-Weinberg Gauge Theory
of Electroweak Interactions. Chapter 23: Further Developments. Appendix M:
Group Theory. Appendix N: Geometrical Aspects of Gauge Fields. Appendix O:
Dimensional Regularization. Appendix P: Grassmann Variables. Appendix Q:
Feynman Rules for Tree Graphs in QCD and the Electroweak Theory.
References.
(Gauge) Symmetries. Chapter 14: QCD I: Introduction, Tree Graph
Predictions, and Jets. Chapter 15: QCD II: Asymptotic Freedom, the
Renormalization Group, and Scaling Violations. Chapter 16: Lattice Field
Theory, and the Renormalization Group Revisited. Chapter 17: Spontaneously
Broken Global Symmetry. Chapter 18: Chiral Symmetry Breaking. Chapter 19:
Spontaneously Broken Local Symmetry. Chapter 20: Introduction to the
Phenomenology of Weak Interactions. Chapter 21: CP Violation and
Oscillation Phenomena. Chapter 22: The Glashow-Salam-Weinberg Gauge Theory
of Electroweak Interactions. Chapter 23: Further Developments. Appendix M:
Group Theory. Appendix N: Geometrical Aspects of Gauge Fields. Appendix O:
Dimensional Regularization. Appendix P: Grassmann Variables. Appendix Q:
Feynman Rules for Tree Graphs in QCD and the Electroweak Theory.
References.