32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

We apply Dirac s generalized Hamiltonian dynamics (GHD), a purely classical formalism, to spinless particles under the influence of a binomial potential. The integrals of the motion for this potential were chosen as the constraints of GHD, and use Fradkin s unit Runge vector in place of the Laplace-Runge-Lenz vector. A functional form of the unit Runge vector is derived for the binomial potential. It is shown in accordance with Oks and Uzer (2002) that a new kind of time dilation occurs for stable, nonradiating states. The primary result which is derived is that the energy of these classical…mehr

Produktbeschreibung
We apply Dirac s generalized Hamiltonian dynamics (GHD), a purely classical formalism, to spinless particles under the influence of a binomial potential. The integrals of the motion for this potential were chosen as the constraints of GHD, and use Fradkin s unit Runge vector in place of the Laplace-Runge-Lenz vector. A functional form of the unit Runge vector is derived for the binomial potential. It is shown in accordance with Oks and Uzer (2002) that a new kind of time dilation occurs for stable, nonradiating states. The primary result which is derived is that the energy of these classical stable states agrees exactly with the quantal results for the ground state and all states of odd values of the radial and angular harmonic numbers.
Autorenporträt
He graduated with a bachelor''s degree in physics from The University of Texas at El Paso in the summer of 2006 after which he enrolled at Auburn University as a master''s student in physics and graduated in the summer of 2008. Eugene Oks was his adviser at Auburn. As of summer of 2010 he is a doctoral student at The University of New Mexico.