83,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
42 °P sammeln
  • Broschiertes Buch

This volume consists of the published proceedings of the GLIM 95 Conference, held at Lancaster University, UK, from 16-19 September 1995. This is the second of such proceedings, the first of which was published as No 14 of the Springer-Verlag Lecture Notes in Statistics (Gilchrist,ed,1992). Since the 1992 conference there has been a modest update of the GLIM system, called GLIM 3.77. This incorporates some minor but pleasant enhancements and these are outlined in these proceedings by payne and Webb. With the completion of GLIM 3.77, future developments of the GLIM system are again under active…mehr

Produktbeschreibung
This volume consists of the published proceedings of the GLIM 95 Conference, held at Lancaster University, UK, from 16-19 September 1995. This is the second of such proceedings, the first of which was published as No 14 of the Springer-Verlag Lecture Notes in Statistics (Gilchrist,ed,1992). Since the 1992 conference there has been a modest update of the GLIM system, called GLIM 3.77. This incorporates some minor but pleasant enhancements and these are outlined in these proceedings by payne and Webb. With the completion of GLIM 3.77, future developments of the GLIM system are again under active review. Aitkin surveys possible directions for GLIM. one sOlMlWhat different avenue for analysing generalized linear models is provided by the GENSTAT system; Lane and payne discuss the new interactive facilities p~ided by version 5 of GENSTAT. On the theory Side, NeIder extends the concept and use of quasi-likelihood, giving useful forms of variance function and a method of introducing a random element into the linear predictor. Longford discusses one approach to the analysis of clustered observations (subjects within groups). Green and Yandell introduce 'semi-parametric modelling', allowing a compromise between parametriC and non-parametriC modelling. They modify the linear predictor by the addition of a ( smooth) curve, and estimate parameters by maximising a penalised log-likelihood. Hastie and Tibshirani introduce generalized additive models, introducing a linear predictor of the form 11 = (X + Efj(xj), with the fj estimated from the data by a weighted average of neighbouring observations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Brian Francis is the Technical Sales Director for NCR's Web Kiosk Solutions. From his office in Duluth, Georgia, Brian is responsible for enlightening NCR and its customers on the technologies and tools used for Web Kiosk Applications. He spends a lot of time on planes and in airports - wondering if this is what he went to college for. He is the author/co-author of numerous Wrox books including the Professional and Beginning ASP series of books, and is now totally immersed in the .NET world.