- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Current applications and recent advances in genomics and proteomics
Genomics and Proteomics Engineering in Medicine and Biology presents a well-rounded, interdisciplinary discussion of a topic that is at the cutting edge of both molecular biology and bioengineering. Compiling contributions by established experts, this book highlights up-to-date applications of biomedical informatics, as well as advancements in genomics-proteomics areas. Structures and algorithms are used to analyze genomic data and develop computational solutions for pathological understanding.
Topics discussed include:…mehr
Andere Kunden interessierten sich auch für
- Chemical and Functional Genomic Approaches to Stem Cell Biology and Regenerative Medicine139,99 €
- Data Analysis and Visualization in Genomics and Proteomics210,99 €
- Gordana Vunjak-Novakovic / R. Ian Freshney (Hgg.)Culture of Cells for Tissue Engineering181,99 €
- Charles R. CantorGenomics279,99 €
- Proteomics146,99 €
- Stuart M. BrownEssentials of Medical Genomics146,99 €
- Laser Imaging and Manipulation in Cell Biology147,99 €
-
-
-
Current applications and recent advances in genomics and proteomics
Genomics and Proteomics Engineering in Medicine and Biology presents a well-rounded, interdisciplinary discussion of a topic that is at the cutting edge of both molecular biology and bioengineering. Compiling contributions by established experts, this book highlights up-to-date applications of biomedical informatics, as well as advancements in genomics-proteomics areas. Structures and algorithms are used to analyze genomic data and develop computational solutions for pathological understanding.
Topics discussed include:
_ Qualitative knowledge models
_ Interpreting micro-array data
_ Gene regulation bioinformatics
_ Methods to analyze micro-array
_ Cancer behavior and radiation therapy
_ Error-control codes and the genome
_ Complex life science multi-database queries
_ Computational protein analysis
_ Tumor and tumor suppressor proteins interactions
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Genomics and Proteomics Engineering in Medicine and Biology presents a well-rounded, interdisciplinary discussion of a topic that is at the cutting edge of both molecular biology and bioengineering. Compiling contributions by established experts, this book highlights up-to-date applications of biomedical informatics, as well as advancements in genomics-proteomics areas. Structures and algorithms are used to analyze genomic data and develop computational solutions for pathological understanding.
Topics discussed include:
_ Qualitative knowledge models
_ Interpreting micro-array data
_ Gene regulation bioinformatics
_ Methods to analyze micro-array
_ Cancer behavior and radiation therapy
_ Error-control codes and the genome
_ Complex life science multi-database queries
_ Computational protein analysis
_ Tumor and tumor suppressor proteins interactions
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- IEEE Press Series on Biomedical Engineering
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 450
- Erscheinungstermin: 1. Dezember 2006
- Englisch
- Abmessung: 235mm x 161mm x 20mm
- Gewicht: 580g
- ISBN-13: 9780471631811
- ISBN-10: 0471631817
- Artikelnr.: 20930896
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- IEEE Press Series on Biomedical Engineering
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 450
- Erscheinungstermin: 1. Dezember 2006
- Englisch
- Abmessung: 235mm x 161mm x 20mm
- Gewicht: 580g
- ISBN-13: 9780471631811
- ISBN-10: 0471631817
- Artikelnr.: 20930896
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
METIN AKAY, PHD, is the Interim Chair and Professor of Bioengineering for the Harrington Department of Bioengineering at the Arizona State University. Dr. Akay is the founding Series Editor of the IEEE Press Series on Biomedical Engineering. In 1997, he received the prestigious Early Career Achievement Award from the IEEE Engineering in Medicine and Biology Society (EMBS). He was the program chair of both the annual IEEE EMBS Conference and Summer School for 2001. Dr. Akay has published several papers in the field and authored, coauthored, or edited fourteen books. He is also the editor in chief of the Wiley Encyclopedia of Biomedical Engineering.
Preface.
Contributors.
1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor
Peleg, Irene S. Gabashvili, and Russ B. Altman).
1.1. Introduction.
1.2. Methods and Tools.
1.3. Modeling Approach and Results.
1.4. Discussion.
1.5. Conclusion.
References.
2. Interpreting Microarray Data and Related Applications Using Nonlinear
System Identification (Michael Korenberg).
2.1. Introduction.
2.2. Background.
2.3. Parallel Cascade Identification.
2.4. Constructing Class Predictors.
2.5. Prediction Based on Gene Expression Profiling.
2.6. Comparing Different Predictors Over the Same Data Set.
2.7. Concluding Remarks.
References.
3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De
Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).
3.1. Introduction.
3.2. Introduction to Transcriptional Regulation.
3.3. Measuring Gene Expression Profiles.
3.4. Preprocessing of Data.
3.5. Clustering of Gene Expression Profiles.
3.6. Cluster Validation.
3.7. Searching for Common Binding Sites of Coregulated Genes.
3.8. Inclusive: Online Integrated Analysis of Microarray Data.
3.9. Further Integrative Steps.
3.10. Conclusion.
References.
4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn
Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon,
Margaret Werner-Washburne, Mönica Mosquera-Caro, and Cheryl Willman).
4.1. Introduction.
4.2. Microarray Experiments and Analysis Methods.
4.3. Unsupervised Methods.
4.4. Supervised Methods.
4.5. Conclusion.
References.
5. In Silico Radiation Oncology: A Platform for Understanding Cancer
Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D.
Dionysiou, and N. Uzunoglu).
5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles
of Simulating Cancer on Computer.
5.2. Brief Literature Review.
5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response
to Radiation Therapy In Vivo.
5.4. Discussion.
5.5. Future Trends.
References.
6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti
and Kenneth Lange).
6.1. Introduction.
6.2. Unified Model.
6.3. Algorithms for Likelihood Evaluation.
6.4. Parameter Estimation via Minorization-Maximization Algorithm.
6.5. Examples.
6.6. Discussion and Conclusion.
References.
7. Error Control Codes and the Genome (Elebeoba E. May).
7.1. Error Control and Communication: A Review.
7.3. Reverse Engineering the Genetic Error Control System.
7.4. Applications of Biological Coding Theory.
References.
8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li,
Yue He, Malika Mahoui, and Omran Bukhres).
8.1. Introduction.
8.2. Architecture.
8.3. Query Execution Plans.
8.4. Related Work.
8.5. Future Trends.
References.
9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos
Goletsis, Christos Lampros, and Costas Papaloukas).
9.1. Introduction: Definitions.
9.2. Databases.
9.3. Sequence Motifs and Domains.
9.4. Sequence Alignment.
9.5. Modeling.
9.6. Classification and Prediction.
9.7. Natural Language Processing.
9.8. Future Trends.
References.
10. Computational Analysis of Interactions Between Tumor and Tumor
Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).
10.1. Introduction.
10.2. Methodology: Resonant Recognition Model.
10.3. Results and Discussions.
10.4. Conclusion.
References.
Index.
About the Editor.
Contributors.
1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor
Peleg, Irene S. Gabashvili, and Russ B. Altman).
1.1. Introduction.
1.2. Methods and Tools.
1.3. Modeling Approach and Results.
1.4. Discussion.
1.5. Conclusion.
References.
2. Interpreting Microarray Data and Related Applications Using Nonlinear
System Identification (Michael Korenberg).
2.1. Introduction.
2.2. Background.
2.3. Parallel Cascade Identification.
2.4. Constructing Class Predictors.
2.5. Prediction Based on Gene Expression Profiling.
2.6. Comparing Different Predictors Over the Same Data Set.
2.7. Concluding Remarks.
References.
3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De
Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).
3.1. Introduction.
3.2. Introduction to Transcriptional Regulation.
3.3. Measuring Gene Expression Profiles.
3.4. Preprocessing of Data.
3.5. Clustering of Gene Expression Profiles.
3.6. Cluster Validation.
3.7. Searching for Common Binding Sites of Coregulated Genes.
3.8. Inclusive: Online Integrated Analysis of Microarray Data.
3.9. Further Integrative Steps.
3.10. Conclusion.
References.
4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn
Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon,
Margaret Werner-Washburne, Mönica Mosquera-Caro, and Cheryl Willman).
4.1. Introduction.
4.2. Microarray Experiments and Analysis Methods.
4.3. Unsupervised Methods.
4.4. Supervised Methods.
4.5. Conclusion.
References.
5. In Silico Radiation Oncology: A Platform for Understanding Cancer
Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D.
Dionysiou, and N. Uzunoglu).
5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles
of Simulating Cancer on Computer.
5.2. Brief Literature Review.
5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response
to Radiation Therapy In Vivo.
5.4. Discussion.
5.5. Future Trends.
References.
6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti
and Kenneth Lange).
6.1. Introduction.
6.2. Unified Model.
6.3. Algorithms for Likelihood Evaluation.
6.4. Parameter Estimation via Minorization-Maximization Algorithm.
6.5. Examples.
6.6. Discussion and Conclusion.
References.
7. Error Control Codes and the Genome (Elebeoba E. May).
7.1. Error Control and Communication: A Review.
7.3. Reverse Engineering the Genetic Error Control System.
7.4. Applications of Biological Coding Theory.
References.
8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li,
Yue He, Malika Mahoui, and Omran Bukhres).
8.1. Introduction.
8.2. Architecture.
8.3. Query Execution Plans.
8.4. Related Work.
8.5. Future Trends.
References.
9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos
Goletsis, Christos Lampros, and Costas Papaloukas).
9.1. Introduction: Definitions.
9.2. Databases.
9.3. Sequence Motifs and Domains.
9.4. Sequence Alignment.
9.5. Modeling.
9.6. Classification and Prediction.
9.7. Natural Language Processing.
9.8. Future Trends.
References.
10. Computational Analysis of Interactions Between Tumor and Tumor
Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).
10.1. Introduction.
10.2. Methodology: Resonant Recognition Model.
10.3. Results and Discussions.
10.4. Conclusion.
References.
Index.
About the Editor.
Preface.
Contributors.
1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor
Peleg, Irene S. Gabashvili, and Russ B. Altman).
1.1. Introduction.
1.2. Methods and Tools.
1.3. Modeling Approach and Results.
1.4. Discussion.
1.5. Conclusion.
References.
2. Interpreting Microarray Data and Related Applications Using Nonlinear
System Identification (Michael Korenberg).
2.1. Introduction.
2.2. Background.
2.3. Parallel Cascade Identification.
2.4. Constructing Class Predictors.
2.5. Prediction Based on Gene Expression Profiling.
2.6. Comparing Different Predictors Over the Same Data Set.
2.7. Concluding Remarks.
References.
3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De
Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).
3.1. Introduction.
3.2. Introduction to Transcriptional Regulation.
3.3. Measuring Gene Expression Profiles.
3.4. Preprocessing of Data.
3.5. Clustering of Gene Expression Profiles.
3.6. Cluster Validation.
3.7. Searching for Common Binding Sites of Coregulated Genes.
3.8. Inclusive: Online Integrated Analysis of Microarray Data.
3.9. Further Integrative Steps.
3.10. Conclusion.
References.
4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn
Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon,
Margaret Werner-Washburne, Mönica Mosquera-Caro, and Cheryl Willman).
4.1. Introduction.
4.2. Microarray Experiments and Analysis Methods.
4.3. Unsupervised Methods.
4.4. Supervised Methods.
4.5. Conclusion.
References.
5. In Silico Radiation Oncology: A Platform for Understanding Cancer
Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D.
Dionysiou, and N. Uzunoglu).
5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles
of Simulating Cancer on Computer.
5.2. Brief Literature Review.
5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response
to Radiation Therapy In Vivo.
5.4. Discussion.
5.5. Future Trends.
References.
6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti
and Kenneth Lange).
6.1. Introduction.
6.2. Unified Model.
6.3. Algorithms for Likelihood Evaluation.
6.4. Parameter Estimation via Minorization-Maximization Algorithm.
6.5. Examples.
6.6. Discussion and Conclusion.
References.
7. Error Control Codes and the Genome (Elebeoba E. May).
7.1. Error Control and Communication: A Review.
7.3. Reverse Engineering the Genetic Error Control System.
7.4. Applications of Biological Coding Theory.
References.
8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li,
Yue He, Malika Mahoui, and Omran Bukhres).
8.1. Introduction.
8.2. Architecture.
8.3. Query Execution Plans.
8.4. Related Work.
8.5. Future Trends.
References.
9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos
Goletsis, Christos Lampros, and Costas Papaloukas).
9.1. Introduction: Definitions.
9.2. Databases.
9.3. Sequence Motifs and Domains.
9.4. Sequence Alignment.
9.5. Modeling.
9.6. Classification and Prediction.
9.7. Natural Language Processing.
9.8. Future Trends.
References.
10. Computational Analysis of Interactions Between Tumor and Tumor
Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).
10.1. Introduction.
10.2. Methodology: Resonant Recognition Model.
10.3. Results and Discussions.
10.4. Conclusion.
References.
Index.
About the Editor.
Contributors.
1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor
Peleg, Irene S. Gabashvili, and Russ B. Altman).
1.1. Introduction.
1.2. Methods and Tools.
1.3. Modeling Approach and Results.
1.4. Discussion.
1.5. Conclusion.
References.
2. Interpreting Microarray Data and Related Applications Using Nonlinear
System Identification (Michael Korenberg).
2.1. Introduction.
2.2. Background.
2.3. Parallel Cascade Identification.
2.4. Constructing Class Predictors.
2.5. Prediction Based on Gene Expression Profiling.
2.6. Comparing Different Predictors Over the Same Data Set.
2.7. Concluding Remarks.
References.
3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De
Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).
3.1. Introduction.
3.2. Introduction to Transcriptional Regulation.
3.3. Measuring Gene Expression Profiles.
3.4. Preprocessing of Data.
3.5. Clustering of Gene Expression Profiles.
3.6. Cluster Validation.
3.7. Searching for Common Binding Sites of Coregulated Genes.
3.8. Inclusive: Online Integrated Analysis of Microarray Data.
3.9. Further Integrative Steps.
3.10. Conclusion.
References.
4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn
Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon,
Margaret Werner-Washburne, Mönica Mosquera-Caro, and Cheryl Willman).
4.1. Introduction.
4.2. Microarray Experiments and Analysis Methods.
4.3. Unsupervised Methods.
4.4. Supervised Methods.
4.5. Conclusion.
References.
5. In Silico Radiation Oncology: A Platform for Understanding Cancer
Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D.
Dionysiou, and N. Uzunoglu).
5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles
of Simulating Cancer on Computer.
5.2. Brief Literature Review.
5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response
to Radiation Therapy In Vivo.
5.4. Discussion.
5.5. Future Trends.
References.
6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti
and Kenneth Lange).
6.1. Introduction.
6.2. Unified Model.
6.3. Algorithms for Likelihood Evaluation.
6.4. Parameter Estimation via Minorization-Maximization Algorithm.
6.5. Examples.
6.6. Discussion and Conclusion.
References.
7. Error Control Codes and the Genome (Elebeoba E. May).
7.1. Error Control and Communication: A Review.
7.3. Reverse Engineering the Genetic Error Control System.
7.4. Applications of Biological Coding Theory.
References.
8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li,
Yue He, Malika Mahoui, and Omran Bukhres).
8.1. Introduction.
8.2. Architecture.
8.3. Query Execution Plans.
8.4. Related Work.
8.5. Future Trends.
References.
9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos
Goletsis, Christos Lampros, and Costas Papaloukas).
9.1. Introduction: Definitions.
9.2. Databases.
9.3. Sequence Motifs and Domains.
9.4. Sequence Alignment.
9.5. Modeling.
9.6. Classification and Prediction.
9.7. Natural Language Processing.
9.8. Future Trends.
References.
10. Computational Analysis of Interactions Between Tumor and Tumor
Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).
10.1. Introduction.
10.2. Methodology: Resonant Recognition Model.
10.3. Results and Discussions.
10.4. Conclusion.
References.
Index.
About the Editor.