33,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
17 °P sammeln
  • Broschiertes Buch

Geometric nets provide many hours of fascinating fun! Each net represents the surface of a unique geometric shape. Some of the shapes were described as much as 2500 years ago. A geometric net is a flat drawing that can be cut and folded into a three dimensional figure. For example, six identical squares can be made into a cube. This is because a cube has six sides, all of which are identical squares. Each of the drawings in this book can be cut and folded into a three dimensional geometric object. This book contains 253 geometric nets, a few of which are: Bielongated Triangular Antiprism Cone…mehr

Produktbeschreibung
Geometric nets provide many hours of fascinating fun! Each net represents the surface of a unique geometric shape. Some of the shapes were described as much as 2500 years ago. A geometric net is a flat drawing that can be cut and folded into a three dimensional figure. For example, six identical squares can be made into a cube. This is because a cube has six sides, all of which are identical squares. Each of the drawings in this book can be cut and folded into a three dimensional geometric object. This book contains 253 geometric nets, a few of which are: Bielongated Triangular Antiprism Cone Cube Cuboctahedron Cylinder Decagonal Antiprism Decagonal Prism Deltoidal Icositetrahedron Die Disdyakis Dodecahedron Dodecahedron, Regular Elongated Pentagonal Bipyramid Elongated Pentagonal Cupola Elongated Pentagonal Pyramid Elongated Square Bipyramid Elongated Square Pyramid Elongated Triangular Antiprism Elongated Triangular Bipyramid Elongated Triangular Cupola Elongated Triangular Pyramid Frustum of a Decagon Pyramid Frustum of a Quadrilateral Pyramid Frustum of a Triangular Pyramid Great Dodecahedron Great Stellated Dodecahedron Gyroelongated Pentagonal Pyramid Gyroelongated Square Bipyramid Gyroelongated Square Prism Gyroelongated Square Pyramid Heptagonal Pyramid Heptahedron 4,4,4,3,3,3,3 Heptahedron 5,5,5,4,4,4,3 Heptahedron 6,6,4,4,4,3,3 Hexagonal Prism Hexagonal Pyramid Hexahedron 4,4,4,4,3,3 Hexahedron 5,4,4,3,3,3 Hexahedron 5,5,4,4,3,3 Icosahedron, Regular Icosidodecahedron Oblique Square Pyramid Octagonal Antiprism Octahedron, Regular Pentagonal Antiprism Pentagonal Bipyramid Pentagonal Cupola Pentagonal Prism Pentagonal Pyramid Pentagonal Rotunda Pentagrammic Prism Rectangular Pyramid Rhombic Prism Rhombicuboctahedron Right Pentagonal Star Pyramid Small Rhombidodecahedron Small Stellated Dodecahedron Snub Cube Snub Dodecahedron Square Antiprism Square Cupola Square Pyramid Square Trapezohedron Stellated Octahedron Tetrahedron - Regular Tetrakis Hexahedron Triakis Octahedron Triakis Tetrahedron Triangular Bipyramid Triangular Cupola Triangular Pentahedron Triangular Prism Triangular Pyramid, Oblique Truncated Cube Truncated Cuboctahedron Truncated Dodecahedron Truncated Icosahedron Truncated Icosidodecahedron Truncated Octahedron Truncated Square Trapezohedron Truncated Tetrahedron
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Tar éis 30 bliain d'fhorbairt bogearraí, bhí David McAdams ag lorg rud éigin nua le déanamh. D'iompaigh sé a aird ar an gcaoi a múintear matamaitic. Trína chuid oibre cúrsa ag Ollscoil Utah Valley, d'fhoghlaim sé cé chomh ríthábhachtach is atá sealbhú stór focal don fhoghlaim go léir, agus go háirithe don mhatamaitic. Breathnaíodh ar Mhatamaitic le fada an lá mar go bhfuil a teanga féin aici, lena comhréir agus a siombailí féin. Fuarthas amach go bhfuil sealbhú na teanga seo ina bhac do go leor scoláirí. Mr. Chuir McAdams focail stór focal matamaitice le chéile i bhfoclóir cuimsitheach, a scríobhadh do dhaltaí meánscoile agus ardscoile. Is éard atá i All Math Words Dictionary (Gach Focal Matamaitice Foclóir) ná críoch le deich mbliana oibre ag bailiú, ag rangú agus ag sainmhíniú na bhfocal go léir a d'fhéadfadh teacht ar dhalta ina chuid staidéir ar ailgéabar, céimseata agus calcalas. Tá breis agus 3000 iontráil sa leabhar seo; níos mó ná 140 nodaireacht matamaitice sainithe; níos mó ná 790 léaráid; treoir fhuaimnithe Aibítir Idirnáisiúnta Foghraíochta (IPA); agus níos mó ná 1400 foirmlí agus cothromóid. Agus é ag súgradh lena chlann clainne, thosaigh an tUasal McAdams ag forbairt tuilleadh smaointe don litearthacht matamaitice. Is iad na torthaí ná Numbers (Uimhreacha), What Is Bigger Than Anything (Infinity) (Cad é Níos Mó ná Rud ar bith (Éiginnteacht)), Swing Sets (Set Theory) (Seiteanna Swing (Teoiric Tacair)), agus Learning With Play Money Activity Kit (Ag Foghlaim Le Airgead Súgartha ). D'imigh McAdams ó uirlisí do mhúineadh na matamaitice, ag bogadh isteach i réimse aoibhnis na matamaitice íon. Mar thoradh air seo tá dhá imleabhar de My Favorite Fractals (Na Fractals is Fearr liom). Agus leabhar ar ainmneacha dathanna á léamh aige dá gharmhac Sawyer, tháinig sé chun smaoineamh ar cé chomh leadránach is atá leabhair ar ainmneacha dathanna do dhaoine fásta. Cad sa nádúr, a d'fhiafraigh sé de féin, a bhfuil go leor de na dathanna bunscoile agus tánaisteacha ann chun ainmneacha dathanna a mhúineadh do leanaí? Ba é a chéad fhreagra ná froganna nó parrots. Chruthaigh sé Dathanna Parrot, Flower Colors (Dathanna na mBláth), agus Space Colors (Dathanna Spáis). Agus é ag filleadh ar an matamaitic, chruthaigh an tUasal McAdams leabhar chun cabhrú le páistí cruthanna a fhoghlaim, ar a dtugtar Shapes. Chuimhnigh sé ar mar a d'aimsigh sé, ina óige, cúpla asphrionta de líonta geoiméadracha agus bhí spéis aige mar a d'fhilleadh siad le chéile ina réada casta 3thoiseacha. D'ullmhaigh sé Geometric Nets Project Book (Leabhar Tionscadal Mór Líonta Geoiméadracha), ansin Gometric Nets Mega Probject Book (Leabhar Tionscadal Líonta Geoiméadracha) le go leor líonta geoiméadracha le gearradh amach agus le chéile. Cuireann go leor foghlaimeoirí óga mata spéis sa chaoi a n-oibríonn an mhatamaitic. Scríobh an tUasal McAdams One Penny, Two (Aon phingin, a dó) chun a léiriú trí scéal cé chomh tapa agus a mhéadaíonn cumhachtaí beirt le gach atriall. Tugtar bosca draíochta do Jerry. Má chuireann tú pingin ann, déantar na pinginí a dhúbailt gach lá mura mbaintear amach aon cheann. Socraíonn Jerry go bhfuil sé ag iarraidh carr spóirt inchomhshóite dorcha glas. Lean trialacha Jerry agus é ag leagan a dhearcadh ar a sprioc.