Matthew Harvey (University of Virginia)
Geometry Illuminated
An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry
Matthew Harvey (University of Virginia)
Geometry Illuminated
An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An extensively illustrated introduction to Euclidean and hyperbolic geometry in the plane, designed for undergraduate courses in geometry.
Andere Kunden interessierten sich auch für
- Evan Chen (Massachusetts Institute of Technology)Euclidean Geometry in Mathematical Olympiads76,99 €
- Claudi Alsina (Barcelona Universitat Politecnica de Catalunya)A Mathematical Space Odyssey79,99 €
- Charles NashTopology and Geometry for Physicists17,99 €
- Julian HavilCurves for the Mathematically Curious31,99 €
- Allan McRobieThe Seduction of Curves36,99 €
- William P. ThurstonThree-Dimensional Geometry and Topology, Volume 1119,99 €
- Julian HavilCurves for the Mathematically Curious24,99 €
-
-
-
An extensively illustrated introduction to Euclidean and hyperbolic geometry in the plane, designed for undergraduate courses in geometry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Mathematical Association of America Textbooks
- Verlag: Mathematical Association of America
- Seitenzahl: 558
- Erscheinungstermin: 30. September 2015
- Englisch
- Abmessung: 228mm x 152mm x 32mm
- Gewicht: 1160g
- ISBN-13: 9781939512116
- ISBN-10: 1939512115
- Artikelnr.: 44316200
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Mathematical Association of America Textbooks
- Verlag: Mathematical Association of America
- Seitenzahl: 558
- Erscheinungstermin: 30. September 2015
- Englisch
- Abmessung: 228mm x 152mm x 32mm
- Gewicht: 1160g
- ISBN-13: 9781939512116
- ISBN-10: 1939512115
- Artikelnr.: 44316200
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Matthew Harvey is an Associate Professor of Mathematics at the University of Virginia's College at Wise, where he has taught since 2006. He graduated from the University of Virginia in 1995 with a BA in Mathematics, and from Johns Hopkins University in 2002 with a PhD in Mathematics.
Axioms and models
Part I. Neutral Geometry: 1. The axioms of incidence and order
2. Angles and triangles
3. Congruence verse I: SAS and ASA
4. Congruence verse II: AAS
5. Congruence verse III: SSS
6. Distance, length and the axioms of continuity
7. Angle measure
8. Triangles in neutral geometry
9. Polygons
10. Quadrilateral congruence theorems
Part II. Euclidean Geometry: 11. The axiom on parallels
12. Parallel projection
13. Similarity
14. Circles
15. Circumference
16. Euclidean constructions
17. Concurrence I
18. Concurrence II
19. Concurrence III
20. Trilinear coordinates
Part III. Euclidean Transformations: 21. Analytic geometry
22. Isometries
23. Reflections
24. Translations and rotations
25. Orientation
26. Glide reflections
27. Change of coordinates
28. Dilation
29. Applications of transformations
30. Area I
31. Area II
32. Barycentric coordinates
33. Inversion I
34. Inversion II
35. Applications of inversion
Part IV. Hyperbolic Geometry: 36. The search for a rectangle
37. Non-Euclidean parallels
38. The pseudosphere
39. Geodesics on the pseudosphere
40. The upper half-plane
41. The Poincaré disk
42. Hyperbolic reflections
43. Orientation preserving hyperbolic isometries
44. The six hyperbolic trigonometric functions
45. Hyperbolic trigonometry
46. Hyperbolic area
47. Tiling
Bibliography
Index.
Part I. Neutral Geometry: 1. The axioms of incidence and order
2. Angles and triangles
3. Congruence verse I: SAS and ASA
4. Congruence verse II: AAS
5. Congruence verse III: SSS
6. Distance, length and the axioms of continuity
7. Angle measure
8. Triangles in neutral geometry
9. Polygons
10. Quadrilateral congruence theorems
Part II. Euclidean Geometry: 11. The axiom on parallels
12. Parallel projection
13. Similarity
14. Circles
15. Circumference
16. Euclidean constructions
17. Concurrence I
18. Concurrence II
19. Concurrence III
20. Trilinear coordinates
Part III. Euclidean Transformations: 21. Analytic geometry
22. Isometries
23. Reflections
24. Translations and rotations
25. Orientation
26. Glide reflections
27. Change of coordinates
28. Dilation
29. Applications of transformations
30. Area I
31. Area II
32. Barycentric coordinates
33. Inversion I
34. Inversion II
35. Applications of inversion
Part IV. Hyperbolic Geometry: 36. The search for a rectangle
37. Non-Euclidean parallels
38. The pseudosphere
39. Geodesics on the pseudosphere
40. The upper half-plane
41. The Poincaré disk
42. Hyperbolic reflections
43. Orientation preserving hyperbolic isometries
44. The six hyperbolic trigonometric functions
45. Hyperbolic trigonometry
46. Hyperbolic area
47. Tiling
Bibliography
Index.
Axioms and models
Part I. Neutral Geometry: 1. The axioms of incidence and order
2. Angles and triangles
3. Congruence verse I: SAS and ASA
4. Congruence verse II: AAS
5. Congruence verse III: SSS
6. Distance, length and the axioms of continuity
7. Angle measure
8. Triangles in neutral geometry
9. Polygons
10. Quadrilateral congruence theorems
Part II. Euclidean Geometry: 11. The axiom on parallels
12. Parallel projection
13. Similarity
14. Circles
15. Circumference
16. Euclidean constructions
17. Concurrence I
18. Concurrence II
19. Concurrence III
20. Trilinear coordinates
Part III. Euclidean Transformations: 21. Analytic geometry
22. Isometries
23. Reflections
24. Translations and rotations
25. Orientation
26. Glide reflections
27. Change of coordinates
28. Dilation
29. Applications of transformations
30. Area I
31. Area II
32. Barycentric coordinates
33. Inversion I
34. Inversion II
35. Applications of inversion
Part IV. Hyperbolic Geometry: 36. The search for a rectangle
37. Non-Euclidean parallels
38. The pseudosphere
39. Geodesics on the pseudosphere
40. The upper half-plane
41. The Poincaré disk
42. Hyperbolic reflections
43. Orientation preserving hyperbolic isometries
44. The six hyperbolic trigonometric functions
45. Hyperbolic trigonometry
46. Hyperbolic area
47. Tiling
Bibliography
Index.
Part I. Neutral Geometry: 1. The axioms of incidence and order
2. Angles and triangles
3. Congruence verse I: SAS and ASA
4. Congruence verse II: AAS
5. Congruence verse III: SSS
6. Distance, length and the axioms of continuity
7. Angle measure
8. Triangles in neutral geometry
9. Polygons
10. Quadrilateral congruence theorems
Part II. Euclidean Geometry: 11. The axiom on parallels
12. Parallel projection
13. Similarity
14. Circles
15. Circumference
16. Euclidean constructions
17. Concurrence I
18. Concurrence II
19. Concurrence III
20. Trilinear coordinates
Part III. Euclidean Transformations: 21. Analytic geometry
22. Isometries
23. Reflections
24. Translations and rotations
25. Orientation
26. Glide reflections
27. Change of coordinates
28. Dilation
29. Applications of transformations
30. Area I
31. Area II
32. Barycentric coordinates
33. Inversion I
34. Inversion II
35. Applications of inversion
Part IV. Hyperbolic Geometry: 36. The search for a rectangle
37. Non-Euclidean parallels
38. The pseudosphere
39. Geodesics on the pseudosphere
40. The upper half-plane
41. The Poincaré disk
42. Hyperbolic reflections
43. Orientation preserving hyperbolic isometries
44. The six hyperbolic trigonometric functions
45. Hyperbolic trigonometry
46. Hyperbolic area
47. Tiling
Bibliography
Index.