145,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
Melden Sie sich für den Produktalarm an, um über die Verfügbarkeit des Produkts informiert zu werden.

  • Broschiertes Buch

Geophysical Convection Dynamics, Volume Five provides a single source reference that enables researchers to go through the basics of geophysical convection. The book includes basics on the dynamics of convection, including linear stability analysis, weakly nonlinear theory, effect of rotation, and double diffusion. In addition, it includes detailed descriptions of fully developed turbulence in well-mixed boundary layers, a hypothesis of vertical homogeneity, effects of moisture, and the formation of clouds. The book focuses on the presentation of the theoretical methodologies for studying…mehr

Produktbeschreibung
Geophysical Convection Dynamics, Volume Five provides a single source reference that enables researchers to go through the basics of geophysical convection. The book includes basics on the dynamics of convection, including linear stability analysis, weakly nonlinear theory, effect of rotation, and double diffusion. In addition, it includes detailed descriptions of fully developed turbulence in well-mixed boundary layers, a hypothesis of vertical homogeneity, effects of moisture, and the formation of clouds. The book focuses on the presentation of the theoretical methodologies for studying convection dynamics with an emphasis on geophysical application that is relevant to fields across the earth and environmental sciences, chemistry and engineering.
Autorenporträt
Dr. Jun-Ichi Yano has more than 30 years of research experience with various geophysical convection problems: those include the dynamics of atmospheric convection and its parameterization, interactions of convection and the large-scale dynamics in the tropical atmosphere, convection inside the giant planets and the Earth's core, and convection of self-gravitating systems in high rotation limit. He has also been extensively working on other problems of geophysical flows: theoretical studies of the vortex dynamics, and their applications to the Jovian atmospheres, oceans, and the tropical atmosphere; chaos theory and its applications to the atmospheric dynamics; wavelet analyses; tropical meteorology, microphysics, and numerical weather a hypothesis of vertical homogeneity, prediction problems.