Aus dem Vorwort: "Die Ergebnisse, Methoden und Begriffe, die die mathematische Wissenschaft dem Forscher ISSAI SCHUR verdankt, haben ihre nachhaltige Wirkung bis in die Gegenwart hinein erwiesen und werden sie unverändert beibehalten. Immer wieder wird auf Untersuchungen von SCHUR zurückgegriffen, werden Erkenntnisse von ihm benutzt oder fortgeführt und werden Vermutungen von ihm bestätigt... Die Besonderheit des mathematischen Schaffens von SCHUR hat einst MAX PLANCK, als Sekretär der physikalisch-mathematischen Klasse der Preußischen Akademie der Wissenschaften zu Berlin, gut gekennzeichnet.…mehr
Aus dem Vorwort: "Die Ergebnisse, Methoden und Begriffe, die die mathematische Wissenschaft dem Forscher ISSAI SCHUR verdankt, haben ihre nachhaltige Wirkung bis in die Gegenwart hinein erwiesen und werden sie unverändert beibehalten. Immer wieder wird auf Untersuchungen von SCHUR zurückgegriffen, werden Erkenntnisse von ihm benutzt oder fortgeführt und werden Vermutungen von ihm bestätigt... Die Besonderheit des mathematischen Schaffens von SCHUR hat einst MAX PLANCK, als Sekretär der physikalisch-mathematischen Klasse der Preußischen Akademie der Wissenschaften zu Berlin, gut gekennzeichnet. In seiner Erwiderung auf die Antrittsrede von SCHUR bei dessen Aufnahme als ordentliches Mitglied der Akademie am 29. Juni 1922 bezeugte er, daß SCHUR "wie nur wenige Mathematiker die große Abelsche Kunst übe, die Probleme richtig zu formulieren, passend umzuformen, geschickt zu teilen und dann einzeln zu bewältigen"."Band I enthält 19 von Issai Schur im Zeitraum von 1912 bis 1924 verfassteArtikel, darunter seine Dissertation.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Band I.- Vorwort von Alfred Brauer und Hans Rohrbach.- Gedenkrede auf Issai Schur von Alfred Brauer.- 1. Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen.- 2. Über einen Satz aus der Theorie der vertauschbaren Matrizen.- 3. Neuer Beweis eines Satzes über endliche Gruppen.- 4. Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen.- 5. Zur Theorie der vertauschbaren Matrizen.- 6. Über eine Klasse von endlichen Gruppen linearer Substitutionen.- 7. Neue Begründung der Theorie der Gruppencharaktere.- 8. Über vertauschbare lineare Differentialausdrücke.- 9. Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen.- 10. Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen.- 11. Über die Darstellung der symmetrischen Gruppe durch lineare homogene Substitutionen.- 12. Neuer Beweis eines Satzes von W. Burnside.- 13. Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen.- 14. Beiträge zur Theorie der Gruppen linearer homogener Substitutionen.- 15. Zur Theorie der linearen homogenen Integralgleichungen.- 16. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen.- 17. Über Gruppen periodischer linearer Substitutionen.- 18. Über Gruppen linearer Substitutionen mit Koeffizienten aus einem algebraischen Zahlkörper.- 19. Bemerkungen zur Theorie derbeschränkten Bilinearformen mit unendlich vielen Veränderlichen.
Band I.- Vorwort von Alfred Brauer und Hans Rohrbach.- Gedenkrede auf Issai Schur von Alfred Brauer.- 1. Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen.- 2. Über einen Satz aus der Theorie der vertauschbaren Matrizen.- 3. Neuer Beweis eines Satzes über endliche Gruppen.- 4. Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen.- 5. Zur Theorie der vertauschbaren Matrizen.- 6. Über eine Klasse von endlichen Gruppen linearer Substitutionen.- 7. Neue Begründung der Theorie der Gruppencharaktere.- 8. Über vertauschbare lineare Differentialausdrücke.- 9. Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen.- 10. Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen.- 11. Über die Darstellung der symmetrischen Gruppe durch lineare homogene Substitutionen.- 12. Neuer Beweis eines Satzes von W. Burnside.- 13. Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen.- 14. Beiträge zur Theorie der Gruppen linearer homogener Substitutionen.- 15. Zur Theorie der linearen homogenen Integralgleichungen.- 16. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen.- 17. Über Gruppen periodischer linearer Substitutionen.- 18. Über Gruppen linearer Substitutionen mit Koeffizienten aus einem algebraischen Zahlkörper.- 19. Bemerkungen zur Theorie derbeschränkten Bilinearformen mit unendlich vielen Veränderlichen.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826