- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
GIS and Geocomputation for Water Resource and Science Engineering not only provides a comprehensive introduction to the fundamentals of geographic information systems but also demonstrates how GIS and mathematical models can be integrated to develop spatial decision support systems to support water resources planning, management and engineering. The book uses a hands-on active learning approach to introduce fundamental concepts and numerous case-studies are provided to reinforce learning and demonstrate practical aspects. The benefits and challenges of using GIS in environmental and water…mehr
Andere Kunden interessierten sich auch für
- Barnali DixonGIS and Geocomputation for Water Resource Science and Engineering197,99 €
- Paul A. Longley / Sue M. Brooks / Rachael McDonnell / Bill MacMillan (Hgg.)Geocomputation335,99 €
- Paul KempEcohydraulics139,99 €
- Robert C. BrearsRegional Water Security162,99 €
- Pollutants and Water Management196,99 €
- Paul A LongleyGeographic Information Science and Systems225,99 €
- Innovative Software Development in GIS197,99 €
-
-
-
GIS and Geocomputation for Water Resource and Science Engineering not only provides a comprehensive introduction to the fundamentals of geographic information systems but also demonstrates how GIS and mathematical models can be integrated to develop spatial decision support systems to support water resources planning, management and engineering. The book uses a hands-on active learning approach to introduce fundamental concepts and numerous case-studies are provided to reinforce learning and demonstrate practical aspects. The benefits and challenges of using GIS in environmental and water resources fields are clearly tackled in this book, demonstrating how these technologies can be used to harness increasingly available digital data to develop spatially-oriented sustainable solutions. In addition to providing a strong grounding on fundamentals, the book also demonstrates how GIS can be combined with traditional physics-based and statistical models as well as information-theoretic tools like neural networks and fuzzy set theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Wiley Works
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 576
- Erscheinungstermin: 26. Januar 2016
- Englisch
- Abmessung: 280mm x 216mm x 30mm
- Gewicht: 1410g
- ISBN-13: 9781118354131
- ISBN-10: 1118354133
- Artikelnr.: 41561812
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Wiley Works
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 576
- Erscheinungstermin: 26. Januar 2016
- Englisch
- Abmessung: 280mm x 216mm x 30mm
- Gewicht: 1410g
- ISBN-13: 9781118354131
- ISBN-10: 1118354133
- Artikelnr.: 41561812
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Kristy Dixon graduated with a degree in English from the University of Utah. She started writing stories when she was seven and has been writing ever since. In the beginning she tried writing historical fiction, but soon found that to be boring. She started writing The Silver Eclipse at the urging of her children and found fantasy writing to be more fun. She has nine children and six chickens. If she isn't writing or playing board games with her kids, she is probably eating cookies or wishing that she were eating cookies. You can contact Kristy at kristydixon35@gmail.com and find her website at kristydixonbooks.com.
Preface xiii
About the Companion Website xv
List of Acronyms xvii
Part I GIS, Geocomputation, and GIS Data 1
1 Introduction 3
1.1 What is geocomputation? 3
1.2 Geocomputation and water resources science and engineering 4
1.3 GIS-enabled geocomputation in water resources science and engineering 5
1.4 Why should water resources engineers and scientists study GIS 5
1.5 Motivation and organization of this book 6
1.6 Concluding remarks 7
References 9
2 A Brief History of GIS and Its Use in Water Resources Engineering 11
2.1 Introduction 11
2.2 Geographic Information Systems (GIS) - software and hardware 11
2.3 Remote sensing and global positioning systems and development of GIS 12
2.4 History of GIS in water resources applications 13
2.5 Recent trends in GIS 19
2.6 Benefits of using GIS in water resources engineering and science 20
2.7 Challenges and limitations of GIS-based approach to water resources
engineering 20
2.8 Concluding remarks 23
References 25
3 Hydrologic Systems and Spatial Datasets 27
3.1 Introduction 27
3.2 Hydrological processes in a watershed 27
3.3 Fundamental spatial datasets for water resources planning: management
and modeling studies 28
3.4 Sources of data for developing digital elevation models 30
3.5 Sensitivity of hydrologic models to DEM resolution 31
3.6 Accuracy issues surrounding land use land cover maps 32
3.7 Sensitivity of hydrologic models to LULC resolution 34
3.8 Sources of data for developing soil maps 36
3.9 Accuracy issues surrounding soil mapping 37
3.10 Sensitivity of hydrologic models to soils resolution 38
3.11 Concluding remarks 43
References 44
4 Water-Related Geospatial Datasets 47
4.1 Introduction 47
4.2 River basin, watershed, and subwatershed delineations 47
4.3 Streamflow and river stage data 48
4.4 Groundwater level data 48
4.5 Climate datasets 48
4.6 Vegetation indices 49
4.7 Soil moisture mapping 49
4.8 Water quality datasets 51
4.9 Monitoring strategies and needs 51
4.10 Sampling techniques and recent advancements in sensing technologies 52
4.11 Concluding remarks 53
References 53
5 Data Sources and Models 55
5.1 Digital data warehouses and repositories 55
5.2 Software for GIS and geocomputations 55
5.3 Software and data models for water resources applications 59
5.4 Concluding remarks 60
References 60
Part II Foundations of GIS 61
6 Data Models for GIS 63
6.1 Introduction 63
6.2 Data types, data entry, and data models 63
6.3 Categorization of spatial datasets 65
6.4 Database structure, storage, and organization 71
6.5 Data storage and encoding 75
6.6 Data conversion 76
6.7 Concluding remarks 78
References 80
7 Global Positioning Systems (GPS) and Remote Sensing 81
7.1 Introduction 81
7.2 The global positioning system (GPS) 81
7.3 Use of GPS in water resources engineering studies 82
7.4 Workflow for GPS data collection 83
7.4.1 12 Steps to effective GPS data collection and compilation 83
7.5 Aerial and satellite remote sensing and imagery 83
7.6 Data and cost of acquiring remotely sensed data 84
7.7 Principles of remote sensing 85
7.8 Remote sensing applications in water resources engineering and science
88
7.9 Bringing remote sensing data into GIS 91
7.10 Concluding remarks 94
References 95
8 Data Quality, Errors, and Uncertainty 97
8.1 Introduction 97
8.2 Map projection, datum, and coordinate systems 97
8.3 Projections in GIS software 101
8.4 Errors, data quality, standards, and documentation 102
8.5 Error and uncertainty 106
8.6 Role of resolution and scale on data quality 107
8.7 Role of metadata in GIS analysis 109
8.8 Concluding remarks 109
References 109
9 GIS Analysis: Fundamentals of Spatial Query 111
9.1 Introduction to spatial analysis 111
9.2 Querying operations in GIS 116
9.3 Structured query language (SQL) 119
9.4 Raster data query by cell value 122
9.5 Spatial join and relate 125
9.6 Concluding remarks 128
References 128
10 Topics in Vector Analysis 129
10.1 Basics of geoprocessing (buffer, dissolve, clipping, erase, and
overlay) 129
10.2 Topology and geometric computations (various measurements) 137
10.3 Proximity and network analysis 143
10.4 Concluding remarks 145
References 147
11 Topics in Raster Analysis 149
11.1 Topics in raster analysis 149
11.2 Local operations 149
11.3 Reclassification 155
11.4 Zonal operations 157
11.5 Calculation of area, perimeter, and shape 163
11.6 Statistical operations 164
11.7 Neighborhood operations 165
11.8 Determination of distance, proximity, and connectivity in raster 167
11.9 Physical distance and cost distance analysis 169
11.10 Buffer analysis in raster 174
11.11 Viewshed analysis 175
11.12 Raster data management (mask, spatial clip, and mosaic) 178
11.13 Concluding remarks 179
References 181
12 Terrain Analysis and Watershed Delineation 183
12.1 Introduction 183
12.2 Topics in watershed characterization and analysis 191
12.3 Concluding remarks 200
References 200
Part III Foundations of Modeling 203
13 Introduction to Water Resources Modeling 205
13.1 Mathematical modeling in water resources engineering and science 205
13.2 Overview of mathematical modeling in water resources engineering and
science 206
13.3 Conceptual modeling: phenomena, processes, and parameters of a system
206
13.4 Common approaches used to develop mathematical models in water
resources engineering 206
13.5 Coupling mathematical models with GIS 209
13.6 Concluding remarks 210
References 211
14 Water Budgets and Conceptual Models 213
14.1 Flow modeling in a homogeneous system (boxed or lumped model) 213
14.2 Flow modeling in heterogeneous systems (control volume approach) 215
14.3 Conceptual model: soil conservation survey curve number method 217
14.4 Fully coupled watershed-scale water balance model: soil water
assessment tool (SWAT) 218
14.5 Concluding remarks 219
References 220
15 Statistical and Geostatistical Modeling 221
15.1 Introduction 221
15.2 Ordinary least squares (OLS) linear regression 221
15.3 Logistic regression 222
15.4 Data reduction and classification techniques 223
15.5 Topics in spatial interpolation and sampling 223
15.6 Geostatistical Methods 227
15.7 Kriging 230
15.8 Critical issues in interpolation 231
15.9 Concluding remarks 232
References 234
16 Decision Analytic and Information Theoretic Models 235
16.1 Introduction 235
16.2 Decision analytic models 235
16.3 Information theoretic approaches 238
16.4 Spatial data mining (SDM) for knowledge discovery in a database 245
16.5 The trend of temporal data modeling in GIS 245
16.6 Concluding remarks 246
References 246
17 Considerations for GIS and Model Integration 249
17.1 Introduction 249
17.2 An overview of practical considerations in adopting and integrating
GIS into water resources projects 250
17.3 Theoretical considerations related to GIS and water resources model
integration 251
17.4 Concluding remarks 256
References 257
18 Useful Geoprocessing Tasks While Carrying Out Water Resources Modeling
259
18.1 Introduction 259
18.2 Getting all data into a common projection 259
18.3 Adding point (X, Y) data and calculating their projected coordinates
260
18.4 Image registration and rectification 264
18.5 Editing tools to transfer information to vectors 266
18.6 GIS for cartography and visualization 270
18.7 Concluding remarks 271
References 271
19 Automating Geoprocessing Tasks in GIS 273
19.1 Introduction 273
19.2 Object-oriented programming paradigm 273
19.3 Vectorized (array) geoprocessing 274
19.4 Making nongeographic attribute calculations 274
19.5 Using ModelBuilder to automate geoprocessing tasks 279
19.6 Using Python scripting for geoprocessing 287
19.7 Introduction to some useful Python constructs 288
19.8 ArcPy geoprocessing modules and site-package 289
19.9 Learning Python and scripting with ArcGIS 289
19.10 Concluding remarks 290
References 291
Part IV Illustrative Case Studies 293
A Preamble to Case Studies 295
20 Watershed Delineation 297
20.1 Introduction 297
20.2 Background 297
20.3 Methods 298
20.4 Concluding remarks 311
References 311
21 Loosely Coupled Hydrologic Model 313
21.1 Introduction 313
21.2 Study area 313
21.3 Methods 314
21.4 Results and discussions 318
21.5 Conclusions 323
Acknowledgment 324
References 324
22 Watershed Characterization 325
22.1 Introduction 325
22.2 Background 325
22.3 Approach 326
22.4 Summary and conclusions 332
References 345
23 Tightly Coupled Models with GIS for Watershed Impact Assessment 347
23.1 Introduction 347
23.2 Methods 350
23.3 Results and discussion 353
23.4 Summary and conclusions 357
References 357
24 GIS for Land Use Impact Assessment 359
24.1 Introduction 359
24.2 Description of study area and datasets 360
24.3 Results and discussion 370
24.4 Conclusions 386
References 387
25 TMDL Curve Number 389
25.1 Introduction 389
25.2 Formulation of competing models 389
25.3 Use of Geographic Information System to obtain parameters for use in
the NRCS method 390
25.4 Risk associated with different formulations 392
25.5 Summary and conclusions 394
References 395
26 Tight Coupling MCDM Models in GIS 397
26.1 Introduction 397
26.2 Using GIS for groundwater vulnerability assessment 398
26.3 Application of DRASTIC methodology in South Texas 398
26.4 Study area 398
26.5 Compiling the database for the DRASTIC index 398
26.6 Development of DRASTIC vulnerability index 399
26.7 DRASTIC index 403
26.8 Summary 404
References 404
27 Advanced GIS MCDM Model Coupling for Assessing Human Health Risks 405
27.1 Introduction 405
27.2 Background information 406
27.3 Methods 407
27.4 Results and discussion 412
27.5 Conclusions 419
References 419
28 Embedded Coupling with JAVA 421
28.1 Introduction 421
28.2 Previous work 422
28.3 Mathematical background 422
28.4 Data formats of input files 423
28.5 AFC structure and usage 423
28.6 Illustrative example 424
References 426
29 GIS-Enabled Physics-Based Contaminant Transport Models for MCDM 427
29.1 Introduction 427
29.2 Methodology 428
29.3 Results and discussion 433
29.4 Summary and conclusions 437
References 437
30 Coupling of Statistical Methods with GIS for Groundwater Vulnerability
Assessment 439
30.1 Introduction 439
30.2 Methodology 440
30.3 Results and discussion 440
30.4 Summary and conclusions 444
References 444
31 Coupling of Fuzzy Logic-Based Method with GIS for Groundwater
Vulnerability Assessment 447
31.1 Introduction 447
31.2 Methodology 448
31.3 Results and discussion 453
31.4 Summary and conclusions 457
References 457
32 Tight Coupling of Artificial Neural Network (ANN) and GIS 461
32.1 Introduction 461
32.2 Methodology 463
32.3 Results and discussion 465
32.4 Summary and conclusion 472
References 473
33 Loose Coupling of Artificial Neuro-Fuzzy Information System (ANFIS) and
GIS 475
33.1 Introduction 475
33.2 Methods 475
33.3 Results and discussion 478
33.4 Conclusions 479
References 480
34 GIS and Hybrid Model Coupling 483
34.1 Introduction 483
34.2 Methodology 483
34.3 Results and discussion 486
34.4 Summary and conclusions 493
References 493
35 Coupling Dynamic Water Resources Models with GIS 495
35.1 Introduction 495
35.2 Modeling infiltration: Green-Ampt approach 495
35.3 Coupling Green-Ampt modeling with regional-scale soil datasets 497
35.4 Result and discussion 497
35.5 Summary 498
References 499
36 Tight Coupling of Well Head Protection Models in GIS with Vector
Datasets 501
36.1 Introduction 501
36.2 Methods for delineating well head protection areas 501
36.3 Fixed radius model development 502
36.4 Implementing well head protection models within GIS 503
36.5 Data compilation 503
36.6 Results and discussion 504
36.7 Summary 505
References 506
37 Loosely Coupled Models in GIS for Optimization 507
37.1 Introduction 507
37.2 Study area 508
37.3 Mathematical model 509
37.4 Data compilation and model application 510
37.5 Results 511
37.6 Summary and conclusions 513
References 514
38 Epilogue 515
References 517
Example of a Syllabus: For Graduate 6000 Level Engineering Students 519
Example of a Syllabus: For Graduate 6000 Level Environmental Science and
Geography Students 523
Example of a Syllabus: For Undergraduate 4000 Level Engineering Students
527
Example of a Syllabus: For Undergraduate 4000 Level Environmental Science
and Geography Students 531
Index 535
About the Companion Website xv
List of Acronyms xvii
Part I GIS, Geocomputation, and GIS Data 1
1 Introduction 3
1.1 What is geocomputation? 3
1.2 Geocomputation and water resources science and engineering 4
1.3 GIS-enabled geocomputation in water resources science and engineering 5
1.4 Why should water resources engineers and scientists study GIS 5
1.5 Motivation and organization of this book 6
1.6 Concluding remarks 7
References 9
2 A Brief History of GIS and Its Use in Water Resources Engineering 11
2.1 Introduction 11
2.2 Geographic Information Systems (GIS) - software and hardware 11
2.3 Remote sensing and global positioning systems and development of GIS 12
2.4 History of GIS in water resources applications 13
2.5 Recent trends in GIS 19
2.6 Benefits of using GIS in water resources engineering and science 20
2.7 Challenges and limitations of GIS-based approach to water resources
engineering 20
2.8 Concluding remarks 23
References 25
3 Hydrologic Systems and Spatial Datasets 27
3.1 Introduction 27
3.2 Hydrological processes in a watershed 27
3.3 Fundamental spatial datasets for water resources planning: management
and modeling studies 28
3.4 Sources of data for developing digital elevation models 30
3.5 Sensitivity of hydrologic models to DEM resolution 31
3.6 Accuracy issues surrounding land use land cover maps 32
3.7 Sensitivity of hydrologic models to LULC resolution 34
3.8 Sources of data for developing soil maps 36
3.9 Accuracy issues surrounding soil mapping 37
3.10 Sensitivity of hydrologic models to soils resolution 38
3.11 Concluding remarks 43
References 44
4 Water-Related Geospatial Datasets 47
4.1 Introduction 47
4.2 River basin, watershed, and subwatershed delineations 47
4.3 Streamflow and river stage data 48
4.4 Groundwater level data 48
4.5 Climate datasets 48
4.6 Vegetation indices 49
4.7 Soil moisture mapping 49
4.8 Water quality datasets 51
4.9 Monitoring strategies and needs 51
4.10 Sampling techniques and recent advancements in sensing technologies 52
4.11 Concluding remarks 53
References 53
5 Data Sources and Models 55
5.1 Digital data warehouses and repositories 55
5.2 Software for GIS and geocomputations 55
5.3 Software and data models for water resources applications 59
5.4 Concluding remarks 60
References 60
Part II Foundations of GIS 61
6 Data Models for GIS 63
6.1 Introduction 63
6.2 Data types, data entry, and data models 63
6.3 Categorization of spatial datasets 65
6.4 Database structure, storage, and organization 71
6.5 Data storage and encoding 75
6.6 Data conversion 76
6.7 Concluding remarks 78
References 80
7 Global Positioning Systems (GPS) and Remote Sensing 81
7.1 Introduction 81
7.2 The global positioning system (GPS) 81
7.3 Use of GPS in water resources engineering studies 82
7.4 Workflow for GPS data collection 83
7.4.1 12 Steps to effective GPS data collection and compilation 83
7.5 Aerial and satellite remote sensing and imagery 83
7.6 Data and cost of acquiring remotely sensed data 84
7.7 Principles of remote sensing 85
7.8 Remote sensing applications in water resources engineering and science
88
7.9 Bringing remote sensing data into GIS 91
7.10 Concluding remarks 94
References 95
8 Data Quality, Errors, and Uncertainty 97
8.1 Introduction 97
8.2 Map projection, datum, and coordinate systems 97
8.3 Projections in GIS software 101
8.4 Errors, data quality, standards, and documentation 102
8.5 Error and uncertainty 106
8.6 Role of resolution and scale on data quality 107
8.7 Role of metadata in GIS analysis 109
8.8 Concluding remarks 109
References 109
9 GIS Analysis: Fundamentals of Spatial Query 111
9.1 Introduction to spatial analysis 111
9.2 Querying operations in GIS 116
9.3 Structured query language (SQL) 119
9.4 Raster data query by cell value 122
9.5 Spatial join and relate 125
9.6 Concluding remarks 128
References 128
10 Topics in Vector Analysis 129
10.1 Basics of geoprocessing (buffer, dissolve, clipping, erase, and
overlay) 129
10.2 Topology and geometric computations (various measurements) 137
10.3 Proximity and network analysis 143
10.4 Concluding remarks 145
References 147
11 Topics in Raster Analysis 149
11.1 Topics in raster analysis 149
11.2 Local operations 149
11.3 Reclassification 155
11.4 Zonal operations 157
11.5 Calculation of area, perimeter, and shape 163
11.6 Statistical operations 164
11.7 Neighborhood operations 165
11.8 Determination of distance, proximity, and connectivity in raster 167
11.9 Physical distance and cost distance analysis 169
11.10 Buffer analysis in raster 174
11.11 Viewshed analysis 175
11.12 Raster data management (mask, spatial clip, and mosaic) 178
11.13 Concluding remarks 179
References 181
12 Terrain Analysis and Watershed Delineation 183
12.1 Introduction 183
12.2 Topics in watershed characterization and analysis 191
12.3 Concluding remarks 200
References 200
Part III Foundations of Modeling 203
13 Introduction to Water Resources Modeling 205
13.1 Mathematical modeling in water resources engineering and science 205
13.2 Overview of mathematical modeling in water resources engineering and
science 206
13.3 Conceptual modeling: phenomena, processes, and parameters of a system
206
13.4 Common approaches used to develop mathematical models in water
resources engineering 206
13.5 Coupling mathematical models with GIS 209
13.6 Concluding remarks 210
References 211
14 Water Budgets and Conceptual Models 213
14.1 Flow modeling in a homogeneous system (boxed or lumped model) 213
14.2 Flow modeling in heterogeneous systems (control volume approach) 215
14.3 Conceptual model: soil conservation survey curve number method 217
14.4 Fully coupled watershed-scale water balance model: soil water
assessment tool (SWAT) 218
14.5 Concluding remarks 219
References 220
15 Statistical and Geostatistical Modeling 221
15.1 Introduction 221
15.2 Ordinary least squares (OLS) linear regression 221
15.3 Logistic regression 222
15.4 Data reduction and classification techniques 223
15.5 Topics in spatial interpolation and sampling 223
15.6 Geostatistical Methods 227
15.7 Kriging 230
15.8 Critical issues in interpolation 231
15.9 Concluding remarks 232
References 234
16 Decision Analytic and Information Theoretic Models 235
16.1 Introduction 235
16.2 Decision analytic models 235
16.3 Information theoretic approaches 238
16.4 Spatial data mining (SDM) for knowledge discovery in a database 245
16.5 The trend of temporal data modeling in GIS 245
16.6 Concluding remarks 246
References 246
17 Considerations for GIS and Model Integration 249
17.1 Introduction 249
17.2 An overview of practical considerations in adopting and integrating
GIS into water resources projects 250
17.3 Theoretical considerations related to GIS and water resources model
integration 251
17.4 Concluding remarks 256
References 257
18 Useful Geoprocessing Tasks While Carrying Out Water Resources Modeling
259
18.1 Introduction 259
18.2 Getting all data into a common projection 259
18.3 Adding point (X, Y) data and calculating their projected coordinates
260
18.4 Image registration and rectification 264
18.5 Editing tools to transfer information to vectors 266
18.6 GIS for cartography and visualization 270
18.7 Concluding remarks 271
References 271
19 Automating Geoprocessing Tasks in GIS 273
19.1 Introduction 273
19.2 Object-oriented programming paradigm 273
19.3 Vectorized (array) geoprocessing 274
19.4 Making nongeographic attribute calculations 274
19.5 Using ModelBuilder to automate geoprocessing tasks 279
19.6 Using Python scripting for geoprocessing 287
19.7 Introduction to some useful Python constructs 288
19.8 ArcPy geoprocessing modules and site-package 289
19.9 Learning Python and scripting with ArcGIS 289
19.10 Concluding remarks 290
References 291
Part IV Illustrative Case Studies 293
A Preamble to Case Studies 295
20 Watershed Delineation 297
20.1 Introduction 297
20.2 Background 297
20.3 Methods 298
20.4 Concluding remarks 311
References 311
21 Loosely Coupled Hydrologic Model 313
21.1 Introduction 313
21.2 Study area 313
21.3 Methods 314
21.4 Results and discussions 318
21.5 Conclusions 323
Acknowledgment 324
References 324
22 Watershed Characterization 325
22.1 Introduction 325
22.2 Background 325
22.3 Approach 326
22.4 Summary and conclusions 332
References 345
23 Tightly Coupled Models with GIS for Watershed Impact Assessment 347
23.1 Introduction 347
23.2 Methods 350
23.3 Results and discussion 353
23.4 Summary and conclusions 357
References 357
24 GIS for Land Use Impact Assessment 359
24.1 Introduction 359
24.2 Description of study area and datasets 360
24.3 Results and discussion 370
24.4 Conclusions 386
References 387
25 TMDL Curve Number 389
25.1 Introduction 389
25.2 Formulation of competing models 389
25.3 Use of Geographic Information System to obtain parameters for use in
the NRCS method 390
25.4 Risk associated with different formulations 392
25.5 Summary and conclusions 394
References 395
26 Tight Coupling MCDM Models in GIS 397
26.1 Introduction 397
26.2 Using GIS for groundwater vulnerability assessment 398
26.3 Application of DRASTIC methodology in South Texas 398
26.4 Study area 398
26.5 Compiling the database for the DRASTIC index 398
26.6 Development of DRASTIC vulnerability index 399
26.7 DRASTIC index 403
26.8 Summary 404
References 404
27 Advanced GIS MCDM Model Coupling for Assessing Human Health Risks 405
27.1 Introduction 405
27.2 Background information 406
27.3 Methods 407
27.4 Results and discussion 412
27.5 Conclusions 419
References 419
28 Embedded Coupling with JAVA 421
28.1 Introduction 421
28.2 Previous work 422
28.3 Mathematical background 422
28.4 Data formats of input files 423
28.5 AFC structure and usage 423
28.6 Illustrative example 424
References 426
29 GIS-Enabled Physics-Based Contaminant Transport Models for MCDM 427
29.1 Introduction 427
29.2 Methodology 428
29.3 Results and discussion 433
29.4 Summary and conclusions 437
References 437
30 Coupling of Statistical Methods with GIS for Groundwater Vulnerability
Assessment 439
30.1 Introduction 439
30.2 Methodology 440
30.3 Results and discussion 440
30.4 Summary and conclusions 444
References 444
31 Coupling of Fuzzy Logic-Based Method with GIS for Groundwater
Vulnerability Assessment 447
31.1 Introduction 447
31.2 Methodology 448
31.3 Results and discussion 453
31.4 Summary and conclusions 457
References 457
32 Tight Coupling of Artificial Neural Network (ANN) and GIS 461
32.1 Introduction 461
32.2 Methodology 463
32.3 Results and discussion 465
32.4 Summary and conclusion 472
References 473
33 Loose Coupling of Artificial Neuro-Fuzzy Information System (ANFIS) and
GIS 475
33.1 Introduction 475
33.2 Methods 475
33.3 Results and discussion 478
33.4 Conclusions 479
References 480
34 GIS and Hybrid Model Coupling 483
34.1 Introduction 483
34.2 Methodology 483
34.3 Results and discussion 486
34.4 Summary and conclusions 493
References 493
35 Coupling Dynamic Water Resources Models with GIS 495
35.1 Introduction 495
35.2 Modeling infiltration: Green-Ampt approach 495
35.3 Coupling Green-Ampt modeling with regional-scale soil datasets 497
35.4 Result and discussion 497
35.5 Summary 498
References 499
36 Tight Coupling of Well Head Protection Models in GIS with Vector
Datasets 501
36.1 Introduction 501
36.2 Methods for delineating well head protection areas 501
36.3 Fixed radius model development 502
36.4 Implementing well head protection models within GIS 503
36.5 Data compilation 503
36.6 Results and discussion 504
36.7 Summary 505
References 506
37 Loosely Coupled Models in GIS for Optimization 507
37.1 Introduction 507
37.2 Study area 508
37.3 Mathematical model 509
37.4 Data compilation and model application 510
37.5 Results 511
37.6 Summary and conclusions 513
References 514
38 Epilogue 515
References 517
Example of a Syllabus: For Graduate 6000 Level Engineering Students 519
Example of a Syllabus: For Graduate 6000 Level Environmental Science and
Geography Students 523
Example of a Syllabus: For Undergraduate 4000 Level Engineering Students
527
Example of a Syllabus: For Undergraduate 4000 Level Environmental Science
and Geography Students 531
Index 535
Preface xiii
About the Companion Website xv
List of Acronyms xvii
Part I GIS, Geocomputation, and GIS Data 1
1 Introduction 3
1.1 What is geocomputation? 3
1.2 Geocomputation and water resources science and engineering 4
1.3 GIS-enabled geocomputation in water resources science and engineering 5
1.4 Why should water resources engineers and scientists study GIS 5
1.5 Motivation and organization of this book 6
1.6 Concluding remarks 7
References 9
2 A Brief History of GIS and Its Use in Water Resources Engineering 11
2.1 Introduction 11
2.2 Geographic Information Systems (GIS) - software and hardware 11
2.3 Remote sensing and global positioning systems and development of GIS 12
2.4 History of GIS in water resources applications 13
2.5 Recent trends in GIS 19
2.6 Benefits of using GIS in water resources engineering and science 20
2.7 Challenges and limitations of GIS-based approach to water resources
engineering 20
2.8 Concluding remarks 23
References 25
3 Hydrologic Systems and Spatial Datasets 27
3.1 Introduction 27
3.2 Hydrological processes in a watershed 27
3.3 Fundamental spatial datasets for water resources planning: management
and modeling studies 28
3.4 Sources of data for developing digital elevation models 30
3.5 Sensitivity of hydrologic models to DEM resolution 31
3.6 Accuracy issues surrounding land use land cover maps 32
3.7 Sensitivity of hydrologic models to LULC resolution 34
3.8 Sources of data for developing soil maps 36
3.9 Accuracy issues surrounding soil mapping 37
3.10 Sensitivity of hydrologic models to soils resolution 38
3.11 Concluding remarks 43
References 44
4 Water-Related Geospatial Datasets 47
4.1 Introduction 47
4.2 River basin, watershed, and subwatershed delineations 47
4.3 Streamflow and river stage data 48
4.4 Groundwater level data 48
4.5 Climate datasets 48
4.6 Vegetation indices 49
4.7 Soil moisture mapping 49
4.8 Water quality datasets 51
4.9 Monitoring strategies and needs 51
4.10 Sampling techniques and recent advancements in sensing technologies 52
4.11 Concluding remarks 53
References 53
5 Data Sources and Models 55
5.1 Digital data warehouses and repositories 55
5.2 Software for GIS and geocomputations 55
5.3 Software and data models for water resources applications 59
5.4 Concluding remarks 60
References 60
Part II Foundations of GIS 61
6 Data Models for GIS 63
6.1 Introduction 63
6.2 Data types, data entry, and data models 63
6.3 Categorization of spatial datasets 65
6.4 Database structure, storage, and organization 71
6.5 Data storage and encoding 75
6.6 Data conversion 76
6.7 Concluding remarks 78
References 80
7 Global Positioning Systems (GPS) and Remote Sensing 81
7.1 Introduction 81
7.2 The global positioning system (GPS) 81
7.3 Use of GPS in water resources engineering studies 82
7.4 Workflow for GPS data collection 83
7.4.1 12 Steps to effective GPS data collection and compilation 83
7.5 Aerial and satellite remote sensing and imagery 83
7.6 Data and cost of acquiring remotely sensed data 84
7.7 Principles of remote sensing 85
7.8 Remote sensing applications in water resources engineering and science
88
7.9 Bringing remote sensing data into GIS 91
7.10 Concluding remarks 94
References 95
8 Data Quality, Errors, and Uncertainty 97
8.1 Introduction 97
8.2 Map projection, datum, and coordinate systems 97
8.3 Projections in GIS software 101
8.4 Errors, data quality, standards, and documentation 102
8.5 Error and uncertainty 106
8.6 Role of resolution and scale on data quality 107
8.7 Role of metadata in GIS analysis 109
8.8 Concluding remarks 109
References 109
9 GIS Analysis: Fundamentals of Spatial Query 111
9.1 Introduction to spatial analysis 111
9.2 Querying operations in GIS 116
9.3 Structured query language (SQL) 119
9.4 Raster data query by cell value 122
9.5 Spatial join and relate 125
9.6 Concluding remarks 128
References 128
10 Topics in Vector Analysis 129
10.1 Basics of geoprocessing (buffer, dissolve, clipping, erase, and
overlay) 129
10.2 Topology and geometric computations (various measurements) 137
10.3 Proximity and network analysis 143
10.4 Concluding remarks 145
References 147
11 Topics in Raster Analysis 149
11.1 Topics in raster analysis 149
11.2 Local operations 149
11.3 Reclassification 155
11.4 Zonal operations 157
11.5 Calculation of area, perimeter, and shape 163
11.6 Statistical operations 164
11.7 Neighborhood operations 165
11.8 Determination of distance, proximity, and connectivity in raster 167
11.9 Physical distance and cost distance analysis 169
11.10 Buffer analysis in raster 174
11.11 Viewshed analysis 175
11.12 Raster data management (mask, spatial clip, and mosaic) 178
11.13 Concluding remarks 179
References 181
12 Terrain Analysis and Watershed Delineation 183
12.1 Introduction 183
12.2 Topics in watershed characterization and analysis 191
12.3 Concluding remarks 200
References 200
Part III Foundations of Modeling 203
13 Introduction to Water Resources Modeling 205
13.1 Mathematical modeling in water resources engineering and science 205
13.2 Overview of mathematical modeling in water resources engineering and
science 206
13.3 Conceptual modeling: phenomena, processes, and parameters of a system
206
13.4 Common approaches used to develop mathematical models in water
resources engineering 206
13.5 Coupling mathematical models with GIS 209
13.6 Concluding remarks 210
References 211
14 Water Budgets and Conceptual Models 213
14.1 Flow modeling in a homogeneous system (boxed or lumped model) 213
14.2 Flow modeling in heterogeneous systems (control volume approach) 215
14.3 Conceptual model: soil conservation survey curve number method 217
14.4 Fully coupled watershed-scale water balance model: soil water
assessment tool (SWAT) 218
14.5 Concluding remarks 219
References 220
15 Statistical and Geostatistical Modeling 221
15.1 Introduction 221
15.2 Ordinary least squares (OLS) linear regression 221
15.3 Logistic regression 222
15.4 Data reduction and classification techniques 223
15.5 Topics in spatial interpolation and sampling 223
15.6 Geostatistical Methods 227
15.7 Kriging 230
15.8 Critical issues in interpolation 231
15.9 Concluding remarks 232
References 234
16 Decision Analytic and Information Theoretic Models 235
16.1 Introduction 235
16.2 Decision analytic models 235
16.3 Information theoretic approaches 238
16.4 Spatial data mining (SDM) for knowledge discovery in a database 245
16.5 The trend of temporal data modeling in GIS 245
16.6 Concluding remarks 246
References 246
17 Considerations for GIS and Model Integration 249
17.1 Introduction 249
17.2 An overview of practical considerations in adopting and integrating
GIS into water resources projects 250
17.3 Theoretical considerations related to GIS and water resources model
integration 251
17.4 Concluding remarks 256
References 257
18 Useful Geoprocessing Tasks While Carrying Out Water Resources Modeling
259
18.1 Introduction 259
18.2 Getting all data into a common projection 259
18.3 Adding point (X, Y) data and calculating their projected coordinates
260
18.4 Image registration and rectification 264
18.5 Editing tools to transfer information to vectors 266
18.6 GIS for cartography and visualization 270
18.7 Concluding remarks 271
References 271
19 Automating Geoprocessing Tasks in GIS 273
19.1 Introduction 273
19.2 Object-oriented programming paradigm 273
19.3 Vectorized (array) geoprocessing 274
19.4 Making nongeographic attribute calculations 274
19.5 Using ModelBuilder to automate geoprocessing tasks 279
19.6 Using Python scripting for geoprocessing 287
19.7 Introduction to some useful Python constructs 288
19.8 ArcPy geoprocessing modules and site-package 289
19.9 Learning Python and scripting with ArcGIS 289
19.10 Concluding remarks 290
References 291
Part IV Illustrative Case Studies 293
A Preamble to Case Studies 295
20 Watershed Delineation 297
20.1 Introduction 297
20.2 Background 297
20.3 Methods 298
20.4 Concluding remarks 311
References 311
21 Loosely Coupled Hydrologic Model 313
21.1 Introduction 313
21.2 Study area 313
21.3 Methods 314
21.4 Results and discussions 318
21.5 Conclusions 323
Acknowledgment 324
References 324
22 Watershed Characterization 325
22.1 Introduction 325
22.2 Background 325
22.3 Approach 326
22.4 Summary and conclusions 332
References 345
23 Tightly Coupled Models with GIS for Watershed Impact Assessment 347
23.1 Introduction 347
23.2 Methods 350
23.3 Results and discussion 353
23.4 Summary and conclusions 357
References 357
24 GIS for Land Use Impact Assessment 359
24.1 Introduction 359
24.2 Description of study area and datasets 360
24.3 Results and discussion 370
24.4 Conclusions 386
References 387
25 TMDL Curve Number 389
25.1 Introduction 389
25.2 Formulation of competing models 389
25.3 Use of Geographic Information System to obtain parameters for use in
the NRCS method 390
25.4 Risk associated with different formulations 392
25.5 Summary and conclusions 394
References 395
26 Tight Coupling MCDM Models in GIS 397
26.1 Introduction 397
26.2 Using GIS for groundwater vulnerability assessment 398
26.3 Application of DRASTIC methodology in South Texas 398
26.4 Study area 398
26.5 Compiling the database for the DRASTIC index 398
26.6 Development of DRASTIC vulnerability index 399
26.7 DRASTIC index 403
26.8 Summary 404
References 404
27 Advanced GIS MCDM Model Coupling for Assessing Human Health Risks 405
27.1 Introduction 405
27.2 Background information 406
27.3 Methods 407
27.4 Results and discussion 412
27.5 Conclusions 419
References 419
28 Embedded Coupling with JAVA 421
28.1 Introduction 421
28.2 Previous work 422
28.3 Mathematical background 422
28.4 Data formats of input files 423
28.5 AFC structure and usage 423
28.6 Illustrative example 424
References 426
29 GIS-Enabled Physics-Based Contaminant Transport Models for MCDM 427
29.1 Introduction 427
29.2 Methodology 428
29.3 Results and discussion 433
29.4 Summary and conclusions 437
References 437
30 Coupling of Statistical Methods with GIS for Groundwater Vulnerability
Assessment 439
30.1 Introduction 439
30.2 Methodology 440
30.3 Results and discussion 440
30.4 Summary and conclusions 444
References 444
31 Coupling of Fuzzy Logic-Based Method with GIS for Groundwater
Vulnerability Assessment 447
31.1 Introduction 447
31.2 Methodology 448
31.3 Results and discussion 453
31.4 Summary and conclusions 457
References 457
32 Tight Coupling of Artificial Neural Network (ANN) and GIS 461
32.1 Introduction 461
32.2 Methodology 463
32.3 Results and discussion 465
32.4 Summary and conclusion 472
References 473
33 Loose Coupling of Artificial Neuro-Fuzzy Information System (ANFIS) and
GIS 475
33.1 Introduction 475
33.2 Methods 475
33.3 Results and discussion 478
33.4 Conclusions 479
References 480
34 GIS and Hybrid Model Coupling 483
34.1 Introduction 483
34.2 Methodology 483
34.3 Results and discussion 486
34.4 Summary and conclusions 493
References 493
35 Coupling Dynamic Water Resources Models with GIS 495
35.1 Introduction 495
35.2 Modeling infiltration: Green-Ampt approach 495
35.3 Coupling Green-Ampt modeling with regional-scale soil datasets 497
35.4 Result and discussion 497
35.5 Summary 498
References 499
36 Tight Coupling of Well Head Protection Models in GIS with Vector
Datasets 501
36.1 Introduction 501
36.2 Methods for delineating well head protection areas 501
36.3 Fixed radius model development 502
36.4 Implementing well head protection models within GIS 503
36.5 Data compilation 503
36.6 Results and discussion 504
36.7 Summary 505
References 506
37 Loosely Coupled Models in GIS for Optimization 507
37.1 Introduction 507
37.2 Study area 508
37.3 Mathematical model 509
37.4 Data compilation and model application 510
37.5 Results 511
37.6 Summary and conclusions 513
References 514
38 Epilogue 515
References 517
Example of a Syllabus: For Graduate 6000 Level Engineering Students 519
Example of a Syllabus: For Graduate 6000 Level Environmental Science and
Geography Students 523
Example of a Syllabus: For Undergraduate 4000 Level Engineering Students
527
Example of a Syllabus: For Undergraduate 4000 Level Environmental Science
and Geography Students 531
Index 535
About the Companion Website xv
List of Acronyms xvii
Part I GIS, Geocomputation, and GIS Data 1
1 Introduction 3
1.1 What is geocomputation? 3
1.2 Geocomputation and water resources science and engineering 4
1.3 GIS-enabled geocomputation in water resources science and engineering 5
1.4 Why should water resources engineers and scientists study GIS 5
1.5 Motivation and organization of this book 6
1.6 Concluding remarks 7
References 9
2 A Brief History of GIS and Its Use in Water Resources Engineering 11
2.1 Introduction 11
2.2 Geographic Information Systems (GIS) - software and hardware 11
2.3 Remote sensing and global positioning systems and development of GIS 12
2.4 History of GIS in water resources applications 13
2.5 Recent trends in GIS 19
2.6 Benefits of using GIS in water resources engineering and science 20
2.7 Challenges and limitations of GIS-based approach to water resources
engineering 20
2.8 Concluding remarks 23
References 25
3 Hydrologic Systems and Spatial Datasets 27
3.1 Introduction 27
3.2 Hydrological processes in a watershed 27
3.3 Fundamental spatial datasets for water resources planning: management
and modeling studies 28
3.4 Sources of data for developing digital elevation models 30
3.5 Sensitivity of hydrologic models to DEM resolution 31
3.6 Accuracy issues surrounding land use land cover maps 32
3.7 Sensitivity of hydrologic models to LULC resolution 34
3.8 Sources of data for developing soil maps 36
3.9 Accuracy issues surrounding soil mapping 37
3.10 Sensitivity of hydrologic models to soils resolution 38
3.11 Concluding remarks 43
References 44
4 Water-Related Geospatial Datasets 47
4.1 Introduction 47
4.2 River basin, watershed, and subwatershed delineations 47
4.3 Streamflow and river stage data 48
4.4 Groundwater level data 48
4.5 Climate datasets 48
4.6 Vegetation indices 49
4.7 Soil moisture mapping 49
4.8 Water quality datasets 51
4.9 Monitoring strategies and needs 51
4.10 Sampling techniques and recent advancements in sensing technologies 52
4.11 Concluding remarks 53
References 53
5 Data Sources and Models 55
5.1 Digital data warehouses and repositories 55
5.2 Software for GIS and geocomputations 55
5.3 Software and data models for water resources applications 59
5.4 Concluding remarks 60
References 60
Part II Foundations of GIS 61
6 Data Models for GIS 63
6.1 Introduction 63
6.2 Data types, data entry, and data models 63
6.3 Categorization of spatial datasets 65
6.4 Database structure, storage, and organization 71
6.5 Data storage and encoding 75
6.6 Data conversion 76
6.7 Concluding remarks 78
References 80
7 Global Positioning Systems (GPS) and Remote Sensing 81
7.1 Introduction 81
7.2 The global positioning system (GPS) 81
7.3 Use of GPS in water resources engineering studies 82
7.4 Workflow for GPS data collection 83
7.4.1 12 Steps to effective GPS data collection and compilation 83
7.5 Aerial and satellite remote sensing and imagery 83
7.6 Data and cost of acquiring remotely sensed data 84
7.7 Principles of remote sensing 85
7.8 Remote sensing applications in water resources engineering and science
88
7.9 Bringing remote sensing data into GIS 91
7.10 Concluding remarks 94
References 95
8 Data Quality, Errors, and Uncertainty 97
8.1 Introduction 97
8.2 Map projection, datum, and coordinate systems 97
8.3 Projections in GIS software 101
8.4 Errors, data quality, standards, and documentation 102
8.5 Error and uncertainty 106
8.6 Role of resolution and scale on data quality 107
8.7 Role of metadata in GIS analysis 109
8.8 Concluding remarks 109
References 109
9 GIS Analysis: Fundamentals of Spatial Query 111
9.1 Introduction to spatial analysis 111
9.2 Querying operations in GIS 116
9.3 Structured query language (SQL) 119
9.4 Raster data query by cell value 122
9.5 Spatial join and relate 125
9.6 Concluding remarks 128
References 128
10 Topics in Vector Analysis 129
10.1 Basics of geoprocessing (buffer, dissolve, clipping, erase, and
overlay) 129
10.2 Topology and geometric computations (various measurements) 137
10.3 Proximity and network analysis 143
10.4 Concluding remarks 145
References 147
11 Topics in Raster Analysis 149
11.1 Topics in raster analysis 149
11.2 Local operations 149
11.3 Reclassification 155
11.4 Zonal operations 157
11.5 Calculation of area, perimeter, and shape 163
11.6 Statistical operations 164
11.7 Neighborhood operations 165
11.8 Determination of distance, proximity, and connectivity in raster 167
11.9 Physical distance and cost distance analysis 169
11.10 Buffer analysis in raster 174
11.11 Viewshed analysis 175
11.12 Raster data management (mask, spatial clip, and mosaic) 178
11.13 Concluding remarks 179
References 181
12 Terrain Analysis and Watershed Delineation 183
12.1 Introduction 183
12.2 Topics in watershed characterization and analysis 191
12.3 Concluding remarks 200
References 200
Part III Foundations of Modeling 203
13 Introduction to Water Resources Modeling 205
13.1 Mathematical modeling in water resources engineering and science 205
13.2 Overview of mathematical modeling in water resources engineering and
science 206
13.3 Conceptual modeling: phenomena, processes, and parameters of a system
206
13.4 Common approaches used to develop mathematical models in water
resources engineering 206
13.5 Coupling mathematical models with GIS 209
13.6 Concluding remarks 210
References 211
14 Water Budgets and Conceptual Models 213
14.1 Flow modeling in a homogeneous system (boxed or lumped model) 213
14.2 Flow modeling in heterogeneous systems (control volume approach) 215
14.3 Conceptual model: soil conservation survey curve number method 217
14.4 Fully coupled watershed-scale water balance model: soil water
assessment tool (SWAT) 218
14.5 Concluding remarks 219
References 220
15 Statistical and Geostatistical Modeling 221
15.1 Introduction 221
15.2 Ordinary least squares (OLS) linear regression 221
15.3 Logistic regression 222
15.4 Data reduction and classification techniques 223
15.5 Topics in spatial interpolation and sampling 223
15.6 Geostatistical Methods 227
15.7 Kriging 230
15.8 Critical issues in interpolation 231
15.9 Concluding remarks 232
References 234
16 Decision Analytic and Information Theoretic Models 235
16.1 Introduction 235
16.2 Decision analytic models 235
16.3 Information theoretic approaches 238
16.4 Spatial data mining (SDM) for knowledge discovery in a database 245
16.5 The trend of temporal data modeling in GIS 245
16.6 Concluding remarks 246
References 246
17 Considerations for GIS and Model Integration 249
17.1 Introduction 249
17.2 An overview of practical considerations in adopting and integrating
GIS into water resources projects 250
17.3 Theoretical considerations related to GIS and water resources model
integration 251
17.4 Concluding remarks 256
References 257
18 Useful Geoprocessing Tasks While Carrying Out Water Resources Modeling
259
18.1 Introduction 259
18.2 Getting all data into a common projection 259
18.3 Adding point (X, Y) data and calculating their projected coordinates
260
18.4 Image registration and rectification 264
18.5 Editing tools to transfer information to vectors 266
18.6 GIS for cartography and visualization 270
18.7 Concluding remarks 271
References 271
19 Automating Geoprocessing Tasks in GIS 273
19.1 Introduction 273
19.2 Object-oriented programming paradigm 273
19.3 Vectorized (array) geoprocessing 274
19.4 Making nongeographic attribute calculations 274
19.5 Using ModelBuilder to automate geoprocessing tasks 279
19.6 Using Python scripting for geoprocessing 287
19.7 Introduction to some useful Python constructs 288
19.8 ArcPy geoprocessing modules and site-package 289
19.9 Learning Python and scripting with ArcGIS 289
19.10 Concluding remarks 290
References 291
Part IV Illustrative Case Studies 293
A Preamble to Case Studies 295
20 Watershed Delineation 297
20.1 Introduction 297
20.2 Background 297
20.3 Methods 298
20.4 Concluding remarks 311
References 311
21 Loosely Coupled Hydrologic Model 313
21.1 Introduction 313
21.2 Study area 313
21.3 Methods 314
21.4 Results and discussions 318
21.5 Conclusions 323
Acknowledgment 324
References 324
22 Watershed Characterization 325
22.1 Introduction 325
22.2 Background 325
22.3 Approach 326
22.4 Summary and conclusions 332
References 345
23 Tightly Coupled Models with GIS for Watershed Impact Assessment 347
23.1 Introduction 347
23.2 Methods 350
23.3 Results and discussion 353
23.4 Summary and conclusions 357
References 357
24 GIS for Land Use Impact Assessment 359
24.1 Introduction 359
24.2 Description of study area and datasets 360
24.3 Results and discussion 370
24.4 Conclusions 386
References 387
25 TMDL Curve Number 389
25.1 Introduction 389
25.2 Formulation of competing models 389
25.3 Use of Geographic Information System to obtain parameters for use in
the NRCS method 390
25.4 Risk associated with different formulations 392
25.5 Summary and conclusions 394
References 395
26 Tight Coupling MCDM Models in GIS 397
26.1 Introduction 397
26.2 Using GIS for groundwater vulnerability assessment 398
26.3 Application of DRASTIC methodology in South Texas 398
26.4 Study area 398
26.5 Compiling the database for the DRASTIC index 398
26.6 Development of DRASTIC vulnerability index 399
26.7 DRASTIC index 403
26.8 Summary 404
References 404
27 Advanced GIS MCDM Model Coupling for Assessing Human Health Risks 405
27.1 Introduction 405
27.2 Background information 406
27.3 Methods 407
27.4 Results and discussion 412
27.5 Conclusions 419
References 419
28 Embedded Coupling with JAVA 421
28.1 Introduction 421
28.2 Previous work 422
28.3 Mathematical background 422
28.4 Data formats of input files 423
28.5 AFC structure and usage 423
28.6 Illustrative example 424
References 426
29 GIS-Enabled Physics-Based Contaminant Transport Models for MCDM 427
29.1 Introduction 427
29.2 Methodology 428
29.3 Results and discussion 433
29.4 Summary and conclusions 437
References 437
30 Coupling of Statistical Methods with GIS for Groundwater Vulnerability
Assessment 439
30.1 Introduction 439
30.2 Methodology 440
30.3 Results and discussion 440
30.4 Summary and conclusions 444
References 444
31 Coupling of Fuzzy Logic-Based Method with GIS for Groundwater
Vulnerability Assessment 447
31.1 Introduction 447
31.2 Methodology 448
31.3 Results and discussion 453
31.4 Summary and conclusions 457
References 457
32 Tight Coupling of Artificial Neural Network (ANN) and GIS 461
32.1 Introduction 461
32.2 Methodology 463
32.3 Results and discussion 465
32.4 Summary and conclusion 472
References 473
33 Loose Coupling of Artificial Neuro-Fuzzy Information System (ANFIS) and
GIS 475
33.1 Introduction 475
33.2 Methods 475
33.3 Results and discussion 478
33.4 Conclusions 479
References 480
34 GIS and Hybrid Model Coupling 483
34.1 Introduction 483
34.2 Methodology 483
34.3 Results and discussion 486
34.4 Summary and conclusions 493
References 493
35 Coupling Dynamic Water Resources Models with GIS 495
35.1 Introduction 495
35.2 Modeling infiltration: Green-Ampt approach 495
35.3 Coupling Green-Ampt modeling with regional-scale soil datasets 497
35.4 Result and discussion 497
35.5 Summary 498
References 499
36 Tight Coupling of Well Head Protection Models in GIS with Vector
Datasets 501
36.1 Introduction 501
36.2 Methods for delineating well head protection areas 501
36.3 Fixed radius model development 502
36.4 Implementing well head protection models within GIS 503
36.5 Data compilation 503
36.6 Results and discussion 504
36.7 Summary 505
References 506
37 Loosely Coupled Models in GIS for Optimization 507
37.1 Introduction 507
37.2 Study area 508
37.3 Mathematical model 509
37.4 Data compilation and model application 510
37.5 Results 511
37.6 Summary and conclusions 513
References 514
38 Epilogue 515
References 517
Example of a Syllabus: For Graduate 6000 Level Engineering Students 519
Example of a Syllabus: For Graduate 6000 Level Environmental Science and
Geography Students 523
Example of a Syllabus: For Undergraduate 4000 Level Engineering Students
527
Example of a Syllabus: For Undergraduate 4000 Level Environmental Science
and Geography Students 531
Index 535