Glycobiology involves studies of complex carbohydrates and posttrans- tional modifications of proteins, and has become an important interdiscip- nary field encompassing chemistry, biochemistry, biology, physiology, and pathology. Although initial research was directed toward elucidation of the different carbohydrate structures and the enzymes synthesizing them, the field has now moved toward identifying the functions of carbohydrates. The pro- cols described in Glycobiology Protocols form a solid basis for investigations of glycan functions in health and disease. The cloning of many of the genes participating in glycosylation processes has helped to enhance our knowledge of how glycosylation is controlled, but has also added another dimension of complexity to the great heterogeneous variety of the structures of the oligos- charides of glycoproteins, proteoglycans, and glycolipids. A family of similar enzyme proteins exists for each glycosylation step. Glycosyltransferases are extremely specific for both the nucleotide sugar donor and the acceptor s- strate, but many other factors control sugar transfer, including the locali- tion and topology of enzymes, cofactors, possible chaperone proteins, and the availability of sugar acceptor substrates. The analysis of the intracellular organization of glycosylation and of the factors controlling the activities of the participating enzymes in the cell are important areas that need more research efforts. Another challenge for future research is to understand the glycodynamics of a cell, that is, how the cell responds to stimuli leading to biological and pathological changes in terms of alterations in glycosylation, and how this affects the biology of the cell.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.