This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. The book originates from lectures by L. Ambrosio at the ETH Zürich in Fall 2001 and contains new results.
This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. The book originates from lectures by L. Ambrosio at the ETH Zürich in Fall 2001 and contains new results. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: 12176106, 978-3-7643-8721-1
2nd ed.
Seitenzahl: 348
Erscheinungstermin: 13. März 2008
Englisch
Abmessung: 240mm x 168mm x 19mm
Gewicht: 604g
ISBN-13: 9783764387211
ISBN-10: 3764387211
Artikelnr.: 23275070
Inhaltsangabe
Notation.- Notation.- Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in p(X) and the Continuity Equation.- Convex Functionals in p(X).- Metric Slope and Subdifferential Calculus in (X).- Gradient Flows and Curves of Maximal Slope in p(X).
Notation.- Notation.- Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in p(X) and the Continuity Equation.- Convex Functionals in p(X).- Metric Slope and Subdifferential Calculus in (X).- Gradient Flows and Curves of Maximal Slope in p(X).
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497