Green and Sustainable Advanced Materials, Volume 1
Processing and Characterization
Herausgeber: Ahmed, Shakeel; Hussain, Chaudhery Mustansar
Green and Sustainable Advanced Materials, Volume 1
Processing and Characterization
Herausgeber: Ahmed, Shakeel; Hussain, Chaudhery Mustansar
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is industry-oriented and shows current challenges for scaling up green and sustainable advanced materials design and manufacturing technology. Green and sustainable advanced materials are the newly synthesized material having superior and special properties. These fulfil today's growing demand for equipment, machines and devices with better quality for an extensive range of applications in various sectors such as paper, biomedical, food, construction, textile, and many more. The objective of this two-volume set is to provide an overview of new developments and state-of-the-art for a…mehr
- Green and Sustainable Advanced Materials, Volume 2258,99 €
- Green Chemistry for Sustainable Biofuel Production204,99 €
- Green Materials and Environmental Chemistry191,99 €
- Green Chemistry and Sustainable Technology189,99 €
- Johannes Karl FinkMaterials, Chemicals and Methods for Dental Applications228,99 €
- Ioannis V. YannasTissue and Organ Regeneration in Adults74,99 €
- Advanced Materials for Wastewater Treatment269,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 378
- Erscheinungstermin: 30. Oktober 2018
- Englisch
- Abmessung: 235mm x 157mm x 25mm
- Gewicht: 699g
- ISBN-13: 9781119407041
- ISBN-10: 1119407044
- Artikelnr.: 53690900
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 378
- Erscheinungstermin: 30. Oktober 2018
- Englisch
- Abmessung: 235mm x 157mm x 25mm
- Gewicht: 699g
- ISBN-13: 9781119407041
- ISBN-10: 1119407044
- Artikelnr.: 53690900
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Tanvir Arfin, Arshiya Tarannum and Kamini Sonawane. 1
1.1. History. 1
1.2. Biomaterials. 2
1.2.1. Dextran. 2
1.2.1.1. Chemical Structure. 2
1.2.1.2. Properties. 2
1.2.1.3. Applications. 3
1.2.2. Cellulose. 3
1.2.2.1. Chemical Structure. 4
1.2.2.2. Properties. 4
1.2.2.3. Application
1.2.3. Gelatine. 4
1.2.3.1. Chemical Structure. 5
1.2.3.2. Properties. 5
1.2.3.3. Application. 5
1.2.4. Alginate. 6
1.2.4.1. Chemical Structure. 6
1.2.4.2. Properties. 7
1.2.4.3. Application. 7
1.2.5. Chitin. 7
1.2.5.1. Chemical Structure. 8
1.2.5.2. Properties. 8
1.2.5.3. Application. 8
1.2.6. Chitosan. 8
1.2.6.1. Chemical Structure. 9
1.2.6.2. Properties. 9
1.2.6.3. Application. 9
1.2.7. Pollulan. 9
1.2.7.1. Chemical Structure. 9
1.2.7.2. Properties. 10
1.2.7.3. Applications. 10
1.2.8. Curdlan. 10
1.2.8.1. Chemical Structure. 10
1.2.8.2. Properties. 11
1.2.8.3. Application. 11
1.2.9. Lignin. 11
1.2.9.1. Chemical Structure. 11
1.2.9.2. Properties. 12
1.2.9.3. Application. 12
1.2.10. Xanthan Gum. 13
1.2.10.1. Chemical Structure. 13
1.2.10.2. Properties. 14
1.2.10.3. Applications. 14
1.2.11. Hydrogels. 14
1.2.11.1. Chemical Structure. 14
1.2.11.2. Properties:. 14
1.2.11.3. Application. 15
1.2.12. Xylan. 15
1.2.12.1. Chemical Structure. 16
1.2.12.2. Properties. 16
1.2.12.3. Application. 16
1.2.13. Arabic Gum. 17
1.2.13.1. Chemical Structure. 17
1.2.13.2. Properties. 17
1.2.13.3. Applications. 18
1.3. CdS. 18
1.4. Carbon Nanotube. 19
1.5. Fe Containing Nanomaterial. 20
1.6. Graphene. 20
1.7. Graphene Oxide. 22
1.8. Inulin. 23
1.9. Pectin. 24
1.10. Metal Oxide. 25
1.10.1 TiO2. 25
1.10.2 ZnO. 26
1.10.3 CeO2. 26
1.11. Polymer. 27
1.11.1. Polystyrene. 27
1.11.2. PANI. 28
1.11.3 Starch. 28
1.11.4 Dendrimer. 28
1.12 Bentonite. 29
1.13 Conclusion. 29
References. 30
2. Characterization of Green and Sustainable Advanced Materials. 35
Pintu Pandit and Gayatri T.N.
2.1. Introduction. 36
2.2. Characterization of Advanced Materials. 38
2.3. Physical Characterization of Advanced Materials. 39
2.3.1. Scanning Electron Microscopy. 41
2.3.2. Energy-dispersive X-ray Spectroscopy. 41
2.3.3. Transmission Electron Microscopy. 42
2.3.4. X-ray Diffraction. 43
2.3.5. Ultraviolet Protection. 44
2.3.6. Thermal Characterization (TGA, DTA, DSC, Cone Calorimetry). 44
2.3.6.1. Thermogravimetric Analysis. 45
2.3.6.2. Differential Thermal Analysis. 47
2.3.6.3. Differential Scanning Calorimetric Analysis. 47
2.3.6.4. Cone Calorimetry. 48
2.3.7. Characterization for Mechanical Properties of Advanced Materials. 49
2.4. Chemical Characterization of Advanced Materials. 50
2.4.1. EXAFS, XPS, and AES. 51
2.4.2. ICP-MS, ICP OES, and SIMS. 55
2.4.3. LC/GC/FTICR-MS. 57
2.4.4. NMR. 58
2.4.5. FTIR and Raman Spectroscopy. 59
2.5. Conclusions. 61
References. 62
3. Green and Sustainable Advanced Biopolymeric and Biocomposite Materials.
67
T.P. Mohan and K. Kanny
3.1. Introduction. 67
3.2. Classification of Green Materials. 68
3.3. Biopolymers. 69
3.4. Natural Fillers. 70
3.5. Natural Fibers. 72
3.6. Biocomposites. 73
3.6.1. Thermoplastic Starch Based Composites. 73
3.6.2. Polylactic Acid (PLA) Based Composites. 74
3.6.3. Cellulose Based Composites. 74
3.6.4. Plant Oil Based Composites. 75
3.6.5. Polymer-Polymer Blends-Based Composites. 76
3.7. Merits and Demerits of Green Materials. 76
3.8. Recent Progress in Improvement of Material Properties. 78
3.8.1. Hybridization. 79
3.9. Current Applications of Biocomposites and Biopolymers. 79
3.9.1. Green Fibers and their Potential in Diversified Applications. 80
3.9.2. Textile Applications. 80
3.9.3. Green Fibers for Pulp. 81
3.9.4. Green Fiber for Biocomposites, Based on Lignocelluloses. 82
3.9.5. Applications of Composites. 83
3.9.6. Particleboards. 83
3.10. Futuristic Applications of Biocomposites and Biopolymers. 83
3.10.1. Development Prospects for Plant Fiber/Polymer Composites: 85
3.11. Conclusion. 85
References. 86
4. Green and Sustainable Advanced Nanomaterials. 93
Alaa K. H. Al-Khalaf and Falah H. Hussein
4.1. Introduction. 93
4.1.1. Green Chemistry and Nanoscale Science. 94
4.1.2. Examples of Such Green Nanoparticles. 94
4.1.2.1. Beta-Carotene Molecule. 94
4.1.2.2. Anthocyanin Molecule. 96
4.1.2.3. Hydro Gel. 99
4.2. Applications of Natural NanoOrganic Materials. 100
4.2.1. Application of Beta-Carotene. 100
4.2.2. Application of Anthocyanin. 100
4.2.3. Application of Hydrogel. 101
4.3. Conclusion. 104
References. 105
5. Biogenic Approaches for SiO2 Nanostructures: Exploring the Sustainable
Platform of Nanofabrication. 107
M. Hariram, P. Vishnukumar and S. Vivekanandhan
5.1. Introduction. 108
5.2. Synthesis of SiO2 Nanostructures. 109
5.2.1. Physical Processes. 110
5.2.2. Chemical Processes. 111
5.2.3. Template Assisted Process. 114
5.3. Bio-Mediated Sustainable Processes for SiO2 Nanostructures. 115
5.3.1. Bacterial Assisted Synthesis Process. 116
5.3.2. Fungal Mediates Biogenic Synthesis Process. 118
5.3.3. Plant Based Synthesis Process. 120
5.3.4. Biomolecular Template Assisted Synthetic Process. 123
5.4. Biogenic SiO2 based Doped, Functionalized and Composite
Nanostructures. 125
5.4.1. Biogenic Synthesis of Doped and Functionalized SiO2 Nanostructures.
126
5.4.2. Biogenic SiO2 Nanocomposites. 127
5.5. Applications of Bio-fabricated SiO2 Nanoparticles. 129
5.5.1. Catalysis. 130
5.5.2. Biomedical. 130
5.5.3. Energy and Environment. 131
5.6. Conclusions. 131
Acknowledgements. 132
References. 132
6. Green and Sustainable Advanced Composite Materials. 143
Yahya F. Al-Khafaji and Falah H. Hussein.
6.1. Introduction. 143
6.2. Applications of Polymers. 145
6.3. The Problems of Synthetic Polymers. 145
6.4. Why Biodegradable Polymers. 147
6.5. Biodegradable Polymers. 147
6.6. Copolymers. 147
6.7. Examples of Biodegradable Polymers is Polyesters. 148
6.7.1. Aliphatic Polyesters Polylactide PLA, PolYcaprolactone PCL and
Polyvalerolactone PVL. 148
6.7.2. Preparation of Polyesters. 148
6.7.2.1. Polycondensation. 149
6.7.2.2. Ring opening Polymerization (ROP). 149
6.7.3. Mechanism of ROP. 150
6.7.3.1. Cationic Ring Opening Polymerization (CROP). 150
6.7.3.2. AnionicRring Opening Polymerization (AROP). 150
6.7.3.3. Coordination-Insertion Polymerization. 150
6.8. Conclusion. 152
References. 152
7. Design and Processing Aspects of Polymer and Composite Materials. 155
Hafiz M. N. Iqbal, Muhammad Bilal and Tahir Rasheed
7.1. Introduction. 156
7.2. Design and Processing. 158
7.3. Natural Polymers and Their Applied Potentialities. 158
7.3.1. Alginate - Physiochemical and Structural Aspects. 158
7.3.2. Carrageenan - Physiochemical and Structural Aspects. 161
7.3.3. Cellulose - Physiochemical and Structural Aspects. 162
7.3.4. CS - Physiochemical and Structural Aspects. 163
7.3.5. Dextran - Physiochemical and Structural Aspects
7.3.6. Guar Gum - Physiochemical and Structural Aspects. 166
7.3.7. Xanthan - Physiochemical and Structural Aspects. 167
7.4. Synthetic Polymers and Their Applied Potentialities. 169
7.4.1. PAA - Physiochemical and Structural Aspects. 169
7.4.2. PAM - Physiochemical and Structural Aspects. 170
7.4.3. PVA - Physiochemical and Structural Aspects. 171
7.4.4. PEG - Physiochemical and Structural Aspects. 171
7.4.5. Poly(vinyl pyrrolidone) - Physiochemical and Structural Aspects. 172
7.4.6. PLA - Physiochemical and Structural Aspects. 172
7.5. Materials-based Biocomposites. 173
7.6. Concluding Remarks and Future Considerations. 179
Conflict of Interest. 180
Acknowledgements. 180
References. 180
8. Seaweed-Based Binder in Wood Composites. 191
Kang Chiang Liew and Nur Syafiqah Nadiah Abdul Ghani
8.1. Introduction. 191
8.2. Methods and Techniques. 193
8.2.1. Preparation of Raw Material. 193
8.2.2. Seaweed Adhesive Preparation. 193
8.2.3. Blending and Mat Forming. 193
8.2.4. Conditioning. 194
8.2.5. Data Analysis. 195
8.3. Results and Discussion. 195
8.3.1. Overview. 195
8.3.2. The Physical Properties of Acacia Mangium Particleboard. 195
8.3.2.2. Density. 197
8.3.3. Dimensional Stability of Acacia Mangium Particleboard. 199
8.3.2.1. Moisture Content. 199
8.3.3.2. Thickness Swelling. 201
8.3.4. The Mechanical Properties of Acacia Mangium Particleboard. 204
8.3.3.1. Water Absorption. 204
8.3.4.2. Modulus of Rupture. 205
8.3.4.3. Internal Bonding. 207
8.4. Conclusion. 208
References. 209
9. Green and Sustainable Textile Materials Using Natural Resources. 213
Pintu Pandit, Gayatri T.N. and Saptarshi Maiti
9.1. Introduction. 213
9.2. Sustainable Colouration of Textile Materials Using Natural Plant Waste
Resources. 216
9.2.1. Natural Dyeing with DSE on Silk Fabric. 216
9.2.2. Natural Dyeing of Textile Materials Using Sterculia Foetida Fruit
Shell Waste Extract. 217
9.2.3. Natural Dyeing of Textile Materials Using Green CSE. 220
9.2.4. Colouration of Textile Materials Using Resources from Temple Flower
Waste. 223
9.3. Sustainable Antibacterial Finishing of Textile Materials Using Natural
Waste Resources. 223
9.3.1. Antibacterial Activity of Delonix Regia Stem Shell Waste Extract on
Silk Fabric. 223
9.3.2. Antibacterial Textile Materials Using Natural Sterculia Foetida
Fruit Shell Waste Extract. 224
9.3.3. Antibacterial Textile Materials Using Waste Green CSE. 225
9.4. Sustainable UV Protective Textile Materials Using Waste Natural
Resources. 226
9.4.1. UV Protective Silk Fabric Using DSE. 226
9.4.2. UV Protective Textile Materials Using Sterculia Foetida FSE. 227
9.4.3. UV Protective Textile Materials Using Waste Green CSE. 228
9.5. Sustainable Green Flame Retardant Textile Materials Using Natural
Resources. 229
9.5.1. Flame Retardancy Imparted by Plant Based Waste Natural Resources.
230
9.5.1.1. Flame Retardant Textile Materials Using Green CSE. 231
9.5.1.2. Flame Retardant Textile Materials Using BPS. 234
9.5.1.3. Flame Retardant Textile Materials Using SJ. 236
9.5.1.4. Flame Retardant Textile Materials Using Starch. 236
9.5.1.5. Flame Retardant Textile Materials Using PRE. 238
9.5.2. Flame Retardancy Imparted by Animal Based Natural Resources. 239
9.5.2.1. Flame Retardant Textile Materials Using Chicken Feather. 239
9.5.2.2. Flame Retardant Textile Materials Using Casein. 239
9.5.2.3. Flame Retardant Textile Materials Using Whey Protein. 240
9.5.2.4. Flame Retardant Textile Materials Using Hydrophobin. 242
9.5.2.5. Flame Retardant Textile Materials Using Deoxyribonucleic Acid. 242
9.5.2.6. Flame Retardant Textile Materials Using Chitosan. 243
9.6. Sustainable Textile Materials Using Clay as Natural Resources. 243
9.6.1. Different Types of Clay and its Application
in Textile Materials. 243
9.6.1.1. Application of Clay in Nanocomposites. 245
9.6.1.2. Application of Clay in UV Protection. 246
9.6.1.3. Application of Clay in Effluent Treatment. 246
9.6.1.4. Application of Clay in Superabsorbency. 247
9.6.1.5. Application of Clay in Discolouration of Denim. 248
9.6.1.6. Application of Clay in Antimicrobial Finish. 248
9.6.1.7. Application of Clay in Flame Retardancy. 249
9.6.1.8. Application of Clay in Dyeing and Printing. 250
9.7. Sustainable Application of Aroma Finishing in Textile Materials Using
Natural Resources. 250
9.7.1. Different Natural Sources of Aroma and Technology for
Microencapsulation. 250
9.7.2. Preparation of Recipe and Method of Application for Aroma Finishing.
251
9.7.3. Fragrance Release Property of Aroma Finishing. 251
9.7.4. Applications of Aroma Finishing in Textile Materials. 252
9.8. Sustainable Mosquito Repellent Textile Materials Using Natural
Resources. 253
9.8.1. Different Types of Repellent Insecticides. 253
9.8.2. Natural Resources of Mosquito Repellents. 253
9.8.3. Mosquito Repellency Evaluation. 253
9.8.4. Method of Application of Mosquito Repellency. 255
9.8.5. Applications of Mosquito Repellency in Textile Materials. 256
9.9. Conclusion. 256
References. 257
10. Green Engineered Functional Textile Materials. 263
Pravin Chavan, Shahid-ul-Islam, Akbar Ali, Shakeel Ahmed and Javed Sheikh
10.1. Introduction. 263
10.1.1. Green Chemicals. 265
10.1.2. Functional Finishing of Textiles: The Expectations. 265
10.2. Different Finishes Applied onto Textiles: Present Techniques vs.
Green Methods. 266
10.2.1. Mosquito Repellent Finish. 267
10.2.2. Green Approach. 269
10.3. Methods of Application of Microcapsules on Textiles. 273
10.4. Release Mechanism of Core Material from Microcapsules. 273
10.5. Chemistry of EO. 273
10.6. Evaluation of Mosquito Repellency. 276
10.6.1. American Society for Testing and Materials (ASTM) Standard E951-83.
276
10.6.2. Screened Cage Method. 276
10.6.3. WHO Cone and Field Test Method. 276
10.6.4. Tunnel Test. 277
10.6.5. USDA Laboratory Method. 279
10.7. Aroma Finish. 279
10.7.1. General Method of Application. 280
10.7.2. Green Methods: EO for Aroma Finish. 281
10.7.3. Evaluation of Aroma Finishes. 282
10.8. Conclusion. 282
References. 283
11. Advances in Bio-Nanohybrid Materials. 289
Houda Saad, Pedro Luis de Hoyos, Ezzeddine Srasra, Fatima Charrier-El
Bouhtoury
11.1. Introduction. 289
11.2. Inorganic/Organic Hybrids. 290
11.2.1 Definition, Classification and Synthetic Routes. 291
11.2.2 Bio-nanohybrid Materials. 296
11.3. Bio-nanohybrid Materials Based on Clay and Polyphenols. 297
11.3.1 Clay Minerals and Organoclay. 297
11.3.1.1. Clay Minerals. 297
11.3.1.2. Surface Modification of Clay Minerals: Organoclays. 306
11.3.2. Polyphenols as Natural Substances. 309
11.3.3. Clay/Polyphenols Hybrids. 311
11.3.3.1. Techniques Used for Clay-Based Hybrids Characterization. 311
11.4. Conclusions and Perspectives. 323
References. 324
12. Green and Sustainable Selenium Nanoparticles and Their Biotechnological
Applications. 333
MeryamSardar and HammadAlam
12.1. Introduction. 334
12.2. Synthesis of SeNPs. 335
12.2.1. Physical Methods of Synthesis of SeNPs. 336
12.2.2. Chemical Methods for Synthesis of SeNPs. 336
12.2.3. Microbial Synthesis of SeNPs. 337
12.2.4. Plant Based Synthesis of SeNPs. 337
12.3. Biotechnological Applications of SeNPs. 341
12.3.1 Anticancerous Activity. 342
12.3.2 Antioxidant Activity. 343
12.3.3 Antidiabetic Effect. 345
12.3.4 Wound Healing. 345
12.3.5 Antibacterial Activity. 345
12.3.6 Antilarvicidal Activity. 347
12.3.7 Biosensors. 347
12.4. Conclusion. 347
Acknowledgments. 348
References. 348
Index. 000
Tanvir Arfin, Arshiya Tarannum and Kamini Sonawane. 1
1.1. History. 1
1.2. Biomaterials. 2
1.2.1. Dextran. 2
1.2.1.1. Chemical Structure. 2
1.2.1.2. Properties. 2
1.2.1.3. Applications. 3
1.2.2. Cellulose. 3
1.2.2.1. Chemical Structure. 4
1.2.2.2. Properties. 4
1.2.2.3. Application
1.2.3. Gelatine. 4
1.2.3.1. Chemical Structure. 5
1.2.3.2. Properties. 5
1.2.3.3. Application. 5
1.2.4. Alginate. 6
1.2.4.1. Chemical Structure. 6
1.2.4.2. Properties. 7
1.2.4.3. Application. 7
1.2.5. Chitin. 7
1.2.5.1. Chemical Structure. 8
1.2.5.2. Properties. 8
1.2.5.3. Application. 8
1.2.6. Chitosan. 8
1.2.6.1. Chemical Structure. 9
1.2.6.2. Properties. 9
1.2.6.3. Application. 9
1.2.7. Pollulan. 9
1.2.7.1. Chemical Structure. 9
1.2.7.2. Properties. 10
1.2.7.3. Applications. 10
1.2.8. Curdlan. 10
1.2.8.1. Chemical Structure. 10
1.2.8.2. Properties. 11
1.2.8.3. Application. 11
1.2.9. Lignin. 11
1.2.9.1. Chemical Structure. 11
1.2.9.2. Properties. 12
1.2.9.3. Application. 12
1.2.10. Xanthan Gum. 13
1.2.10.1. Chemical Structure. 13
1.2.10.2. Properties. 14
1.2.10.3. Applications. 14
1.2.11. Hydrogels. 14
1.2.11.1. Chemical Structure. 14
1.2.11.2. Properties:. 14
1.2.11.3. Application. 15
1.2.12. Xylan. 15
1.2.12.1. Chemical Structure. 16
1.2.12.2. Properties. 16
1.2.12.3. Application. 16
1.2.13. Arabic Gum. 17
1.2.13.1. Chemical Structure. 17
1.2.13.2. Properties. 17
1.2.13.3. Applications. 18
1.3. CdS. 18
1.4. Carbon Nanotube. 19
1.5. Fe Containing Nanomaterial. 20
1.6. Graphene. 20
1.7. Graphene Oxide. 22
1.8. Inulin. 23
1.9. Pectin. 24
1.10. Metal Oxide. 25
1.10.1 TiO2. 25
1.10.2 ZnO. 26
1.10.3 CeO2. 26
1.11. Polymer. 27
1.11.1. Polystyrene. 27
1.11.2. PANI. 28
1.11.3 Starch. 28
1.11.4 Dendrimer. 28
1.12 Bentonite. 29
1.13 Conclusion. 29
References. 30
2. Characterization of Green and Sustainable Advanced Materials. 35
Pintu Pandit and Gayatri T.N.
2.1. Introduction. 36
2.2. Characterization of Advanced Materials. 38
2.3. Physical Characterization of Advanced Materials. 39
2.3.1. Scanning Electron Microscopy. 41
2.3.2. Energy-dispersive X-ray Spectroscopy. 41
2.3.3. Transmission Electron Microscopy. 42
2.3.4. X-ray Diffraction. 43
2.3.5. Ultraviolet Protection. 44
2.3.6. Thermal Characterization (TGA, DTA, DSC, Cone Calorimetry). 44
2.3.6.1. Thermogravimetric Analysis. 45
2.3.6.2. Differential Thermal Analysis. 47
2.3.6.3. Differential Scanning Calorimetric Analysis. 47
2.3.6.4. Cone Calorimetry. 48
2.3.7. Characterization for Mechanical Properties of Advanced Materials. 49
2.4. Chemical Characterization of Advanced Materials. 50
2.4.1. EXAFS, XPS, and AES. 51
2.4.2. ICP-MS, ICP OES, and SIMS. 55
2.4.3. LC/GC/FTICR-MS. 57
2.4.4. NMR. 58
2.4.5. FTIR and Raman Spectroscopy. 59
2.5. Conclusions. 61
References. 62
3. Green and Sustainable Advanced Biopolymeric and Biocomposite Materials.
67
T.P. Mohan and K. Kanny
3.1. Introduction. 67
3.2. Classification of Green Materials. 68
3.3. Biopolymers. 69
3.4. Natural Fillers. 70
3.5. Natural Fibers. 72
3.6. Biocomposites. 73
3.6.1. Thermoplastic Starch Based Composites. 73
3.6.2. Polylactic Acid (PLA) Based Composites. 74
3.6.3. Cellulose Based Composites. 74
3.6.4. Plant Oil Based Composites. 75
3.6.5. Polymer-Polymer Blends-Based Composites. 76
3.7. Merits and Demerits of Green Materials. 76
3.8. Recent Progress in Improvement of Material Properties. 78
3.8.1. Hybridization. 79
3.9. Current Applications of Biocomposites and Biopolymers. 79
3.9.1. Green Fibers and their Potential in Diversified Applications. 80
3.9.2. Textile Applications. 80
3.9.3. Green Fibers for Pulp. 81
3.9.4. Green Fiber for Biocomposites, Based on Lignocelluloses. 82
3.9.5. Applications of Composites. 83
3.9.6. Particleboards. 83
3.10. Futuristic Applications of Biocomposites and Biopolymers. 83
3.10.1. Development Prospects for Plant Fiber/Polymer Composites: 85
3.11. Conclusion. 85
References. 86
4. Green and Sustainable Advanced Nanomaterials. 93
Alaa K. H. Al-Khalaf and Falah H. Hussein
4.1. Introduction. 93
4.1.1. Green Chemistry and Nanoscale Science. 94
4.1.2. Examples of Such Green Nanoparticles. 94
4.1.2.1. Beta-Carotene Molecule. 94
4.1.2.2. Anthocyanin Molecule. 96
4.1.2.3. Hydro Gel. 99
4.2. Applications of Natural NanoOrganic Materials. 100
4.2.1. Application of Beta-Carotene. 100
4.2.2. Application of Anthocyanin. 100
4.2.3. Application of Hydrogel. 101
4.3. Conclusion. 104
References. 105
5. Biogenic Approaches for SiO2 Nanostructures: Exploring the Sustainable
Platform of Nanofabrication. 107
M. Hariram, P. Vishnukumar and S. Vivekanandhan
5.1. Introduction. 108
5.2. Synthesis of SiO2 Nanostructures. 109
5.2.1. Physical Processes. 110
5.2.2. Chemical Processes. 111
5.2.3. Template Assisted Process. 114
5.3. Bio-Mediated Sustainable Processes for SiO2 Nanostructures. 115
5.3.1. Bacterial Assisted Synthesis Process. 116
5.3.2. Fungal Mediates Biogenic Synthesis Process. 118
5.3.3. Plant Based Synthesis Process. 120
5.3.4. Biomolecular Template Assisted Synthetic Process. 123
5.4. Biogenic SiO2 based Doped, Functionalized and Composite
Nanostructures. 125
5.4.1. Biogenic Synthesis of Doped and Functionalized SiO2 Nanostructures.
126
5.4.2. Biogenic SiO2 Nanocomposites. 127
5.5. Applications of Bio-fabricated SiO2 Nanoparticles. 129
5.5.1. Catalysis. 130
5.5.2. Biomedical. 130
5.5.3. Energy and Environment. 131
5.6. Conclusions. 131
Acknowledgements. 132
References. 132
6. Green and Sustainable Advanced Composite Materials. 143
Yahya F. Al-Khafaji and Falah H. Hussein.
6.1. Introduction. 143
6.2. Applications of Polymers. 145
6.3. The Problems of Synthetic Polymers. 145
6.4. Why Biodegradable Polymers. 147
6.5. Biodegradable Polymers. 147
6.6. Copolymers. 147
6.7. Examples of Biodegradable Polymers is Polyesters. 148
6.7.1. Aliphatic Polyesters Polylactide PLA, PolYcaprolactone PCL and
Polyvalerolactone PVL. 148
6.7.2. Preparation of Polyesters. 148
6.7.2.1. Polycondensation. 149
6.7.2.2. Ring opening Polymerization (ROP). 149
6.7.3. Mechanism of ROP. 150
6.7.3.1. Cationic Ring Opening Polymerization (CROP). 150
6.7.3.2. AnionicRring Opening Polymerization (AROP). 150
6.7.3.3. Coordination-Insertion Polymerization. 150
6.8. Conclusion. 152
References. 152
7. Design and Processing Aspects of Polymer and Composite Materials. 155
Hafiz M. N. Iqbal, Muhammad Bilal and Tahir Rasheed
7.1. Introduction. 156
7.2. Design and Processing. 158
7.3. Natural Polymers and Their Applied Potentialities. 158
7.3.1. Alginate - Physiochemical and Structural Aspects. 158
7.3.2. Carrageenan - Physiochemical and Structural Aspects. 161
7.3.3. Cellulose - Physiochemical and Structural Aspects. 162
7.3.4. CS - Physiochemical and Structural Aspects. 163
7.3.5. Dextran - Physiochemical and Structural Aspects
7.3.6. Guar Gum - Physiochemical and Structural Aspects. 166
7.3.7. Xanthan - Physiochemical and Structural Aspects. 167
7.4. Synthetic Polymers and Their Applied Potentialities. 169
7.4.1. PAA - Physiochemical and Structural Aspects. 169
7.4.2. PAM - Physiochemical and Structural Aspects. 170
7.4.3. PVA - Physiochemical and Structural Aspects. 171
7.4.4. PEG - Physiochemical and Structural Aspects. 171
7.4.5. Poly(vinyl pyrrolidone) - Physiochemical and Structural Aspects. 172
7.4.6. PLA - Physiochemical and Structural Aspects. 172
7.5. Materials-based Biocomposites. 173
7.6. Concluding Remarks and Future Considerations. 179
Conflict of Interest. 180
Acknowledgements. 180
References. 180
8. Seaweed-Based Binder in Wood Composites. 191
Kang Chiang Liew and Nur Syafiqah Nadiah Abdul Ghani
8.1. Introduction. 191
8.2. Methods and Techniques. 193
8.2.1. Preparation of Raw Material. 193
8.2.2. Seaweed Adhesive Preparation. 193
8.2.3. Blending and Mat Forming. 193
8.2.4. Conditioning. 194
8.2.5. Data Analysis. 195
8.3. Results and Discussion. 195
8.3.1. Overview. 195
8.3.2. The Physical Properties of Acacia Mangium Particleboard. 195
8.3.2.2. Density. 197
8.3.3. Dimensional Stability of Acacia Mangium Particleboard. 199
8.3.2.1. Moisture Content. 199
8.3.3.2. Thickness Swelling. 201
8.3.4. The Mechanical Properties of Acacia Mangium Particleboard. 204
8.3.3.1. Water Absorption. 204
8.3.4.2. Modulus of Rupture. 205
8.3.4.3. Internal Bonding. 207
8.4. Conclusion. 208
References. 209
9. Green and Sustainable Textile Materials Using Natural Resources. 213
Pintu Pandit, Gayatri T.N. and Saptarshi Maiti
9.1. Introduction. 213
9.2. Sustainable Colouration of Textile Materials Using Natural Plant Waste
Resources. 216
9.2.1. Natural Dyeing with DSE on Silk Fabric. 216
9.2.2. Natural Dyeing of Textile Materials Using Sterculia Foetida Fruit
Shell Waste Extract. 217
9.2.3. Natural Dyeing of Textile Materials Using Green CSE. 220
9.2.4. Colouration of Textile Materials Using Resources from Temple Flower
Waste. 223
9.3. Sustainable Antibacterial Finishing of Textile Materials Using Natural
Waste Resources. 223
9.3.1. Antibacterial Activity of Delonix Regia Stem Shell Waste Extract on
Silk Fabric. 223
9.3.2. Antibacterial Textile Materials Using Natural Sterculia Foetida
Fruit Shell Waste Extract. 224
9.3.3. Antibacterial Textile Materials Using Waste Green CSE. 225
9.4. Sustainable UV Protective Textile Materials Using Waste Natural
Resources. 226
9.4.1. UV Protective Silk Fabric Using DSE. 226
9.4.2. UV Protective Textile Materials Using Sterculia Foetida FSE. 227
9.4.3. UV Protective Textile Materials Using Waste Green CSE. 228
9.5. Sustainable Green Flame Retardant Textile Materials Using Natural
Resources. 229
9.5.1. Flame Retardancy Imparted by Plant Based Waste Natural Resources.
230
9.5.1.1. Flame Retardant Textile Materials Using Green CSE. 231
9.5.1.2. Flame Retardant Textile Materials Using BPS. 234
9.5.1.3. Flame Retardant Textile Materials Using SJ. 236
9.5.1.4. Flame Retardant Textile Materials Using Starch. 236
9.5.1.5. Flame Retardant Textile Materials Using PRE. 238
9.5.2. Flame Retardancy Imparted by Animal Based Natural Resources. 239
9.5.2.1. Flame Retardant Textile Materials Using Chicken Feather. 239
9.5.2.2. Flame Retardant Textile Materials Using Casein. 239
9.5.2.3. Flame Retardant Textile Materials Using Whey Protein. 240
9.5.2.4. Flame Retardant Textile Materials Using Hydrophobin. 242
9.5.2.5. Flame Retardant Textile Materials Using Deoxyribonucleic Acid. 242
9.5.2.6. Flame Retardant Textile Materials Using Chitosan. 243
9.6. Sustainable Textile Materials Using Clay as Natural Resources. 243
9.6.1. Different Types of Clay and its Application
in Textile Materials. 243
9.6.1.1. Application of Clay in Nanocomposites. 245
9.6.1.2. Application of Clay in UV Protection. 246
9.6.1.3. Application of Clay in Effluent Treatment. 246
9.6.1.4. Application of Clay in Superabsorbency. 247
9.6.1.5. Application of Clay in Discolouration of Denim. 248
9.6.1.6. Application of Clay in Antimicrobial Finish. 248
9.6.1.7. Application of Clay in Flame Retardancy. 249
9.6.1.8. Application of Clay in Dyeing and Printing. 250
9.7. Sustainable Application of Aroma Finishing in Textile Materials Using
Natural Resources. 250
9.7.1. Different Natural Sources of Aroma and Technology for
Microencapsulation. 250
9.7.2. Preparation of Recipe and Method of Application for Aroma Finishing.
251
9.7.3. Fragrance Release Property of Aroma Finishing. 251
9.7.4. Applications of Aroma Finishing in Textile Materials. 252
9.8. Sustainable Mosquito Repellent Textile Materials Using Natural
Resources. 253
9.8.1. Different Types of Repellent Insecticides. 253
9.8.2. Natural Resources of Mosquito Repellents. 253
9.8.3. Mosquito Repellency Evaluation. 253
9.8.4. Method of Application of Mosquito Repellency. 255
9.8.5. Applications of Mosquito Repellency in Textile Materials. 256
9.9. Conclusion. 256
References. 257
10. Green Engineered Functional Textile Materials. 263
Pravin Chavan, Shahid-ul-Islam, Akbar Ali, Shakeel Ahmed and Javed Sheikh
10.1. Introduction. 263
10.1.1. Green Chemicals. 265
10.1.2. Functional Finishing of Textiles: The Expectations. 265
10.2. Different Finishes Applied onto Textiles: Present Techniques vs.
Green Methods. 266
10.2.1. Mosquito Repellent Finish. 267
10.2.2. Green Approach. 269
10.3. Methods of Application of Microcapsules on Textiles. 273
10.4. Release Mechanism of Core Material from Microcapsules. 273
10.5. Chemistry of EO. 273
10.6. Evaluation of Mosquito Repellency. 276
10.6.1. American Society for Testing and Materials (ASTM) Standard E951-83.
276
10.6.2. Screened Cage Method. 276
10.6.3. WHO Cone and Field Test Method. 276
10.6.4. Tunnel Test. 277
10.6.5. USDA Laboratory Method. 279
10.7. Aroma Finish. 279
10.7.1. General Method of Application. 280
10.7.2. Green Methods: EO for Aroma Finish. 281
10.7.3. Evaluation of Aroma Finishes. 282
10.8. Conclusion. 282
References. 283
11. Advances in Bio-Nanohybrid Materials. 289
Houda Saad, Pedro Luis de Hoyos, Ezzeddine Srasra, Fatima Charrier-El
Bouhtoury
11.1. Introduction. 289
11.2. Inorganic/Organic Hybrids. 290
11.2.1 Definition, Classification and Synthetic Routes. 291
11.2.2 Bio-nanohybrid Materials. 296
11.3. Bio-nanohybrid Materials Based on Clay and Polyphenols. 297
11.3.1 Clay Minerals and Organoclay. 297
11.3.1.1. Clay Minerals. 297
11.3.1.2. Surface Modification of Clay Minerals: Organoclays. 306
11.3.2. Polyphenols as Natural Substances. 309
11.3.3. Clay/Polyphenols Hybrids. 311
11.3.3.1. Techniques Used for Clay-Based Hybrids Characterization. 311
11.4. Conclusions and Perspectives. 323
References. 324
12. Green and Sustainable Selenium Nanoparticles and Their Biotechnological
Applications. 333
MeryamSardar and HammadAlam
12.1. Introduction. 334
12.2. Synthesis of SeNPs. 335
12.2.1. Physical Methods of Synthesis of SeNPs. 336
12.2.2. Chemical Methods for Synthesis of SeNPs. 336
12.2.3. Microbial Synthesis of SeNPs. 337
12.2.4. Plant Based Synthesis of SeNPs. 337
12.3. Biotechnological Applications of SeNPs. 341
12.3.1 Anticancerous Activity. 342
12.3.2 Antioxidant Activity. 343
12.3.3 Antidiabetic Effect. 345
12.3.4 Wound Healing. 345
12.3.5 Antibacterial Activity. 345
12.3.6 Antilarvicidal Activity. 347
12.3.7 Biosensors. 347
12.4. Conclusion. 347
Acknowledgments. 348
References. 348
Index. 000