Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of…mehr
Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
I Preliminaries.- 1. Riemannian manifolds.- 2. Almost complex and symplectic manifolds.- 3. J-holomorphic maps.- 4. Riemann surfaces and hyperbolic geometry.- 5. Annuli.- II Estimates for area and first derivatives.- 1. Gromov's Schwarz- and monotonicity lemma.- 2. Area of J-holomorphic maps.- 3. Isoperimetric inequalities for J-holomorphic maps.- 4. Proof of the Gromov-Schwarz lemma.- III Higher order derivatives.- 1. 1-jets of J-holomorphic maps.- 2. Removal of singularities.- 3. Converging sequences of J-holomorphic maps.- 4. Variable almost complex structures.- IV Hyperbolic surfaces.- 1. Hexagons.- 2. Building hyperbolic surfaces from pairs of pants.- 3. Pairs of pants decomposition.- 4. Thick-thin decomposition.- 5. Compactness properties of hyperbolic structures.- V The compactness theorem.- 1. Cusp curves.- 2. Proof of the compactness theorem.- 3. Bubbles.- VI The squeezing theorem.- 1. Discussion of the statement.- 2. Proof modulo existence result for pseudo-holomorphic curves.- 3. The analytical setup: A rough outline.- 4. The required existence result.- Appendix A The classical isoperimetric inequality.- References on pseudo-holomorphic curves.
I Preliminaries.- 1. Riemannian manifolds.- 2. Almost complex and symplectic manifolds.- 3. J-holomorphic maps.- 4. Riemann surfaces and hyperbolic geometry.- 5. Annuli.- II Estimates for area and first derivatives.- 1. Gromov's Schwarz- and monotonicity lemma.- 2. Area of J-holomorphic maps.- 3. Isoperimetric inequalities for J-holomorphic maps.- 4. Proof of the Gromov-Schwarz lemma.- III Higher order derivatives.- 1. 1-jets of J-holomorphic maps.- 2. Removal of singularities.- 3. Converging sequences of J-holomorphic maps.- 4. Variable almost complex structures.- IV Hyperbolic surfaces.- 1. Hexagons.- 2. Building hyperbolic surfaces from pairs of pants.- 3. Pairs of pants decomposition.- 4. Thick-thin decomposition.- 5. Compactness properties of hyperbolic structures.- V The compactness theorem.- 1. Cusp curves.- 2. Proof of the compactness theorem.- 3. Bubbles.- VI The squeezing theorem.- 1. Discussion of the statement.- 2. Proof modulo existence result for pseudo-holomorphic curves.- 3. The analytical setup: A rough outline.- 4. The required existence result.- Appendix A The classical isoperimetric inequality.- References on pseudo-holomorphic curves.
Rezensionen
"...the book provides a self-contained and for the most part excellent elaboration of Gromov's proof of the compactness theorem." -- Mathematical Reviews
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826