- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Andere Kunden interessierten sich auch für
- Heinrich BraunerDifferentialgeometrie64,99 €
- C. T. J. DodsonTensor Geometry81,99 €
- Robert SauerDifferenzengeometrie54,99 €
- J. A. SchoutenDer Ricci-Kalkül54,99 €
- Matthias KreckPositive Krümmung und Topologie54,99 €
- Dirk FerusTotale Absolutkrümmung in Differentialgeometrie und -topologie19,95 €
- Otto HauptGeometrische Ordnungen54,99 €
-
-
-
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-50371-9
- 1922.
- Seitenzahl: 212
- Erscheinungstermin: 1. Januar 1922
- Deutsch
- Abmessung: 229mm x 152mm x 12mm
- Gewicht: 317g
- ISBN-13: 9783642503719
- ISBN-10: 3642503713
- Artikelnr.: 37478684
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-50371-9
- 1922.
- Seitenzahl: 212
- Erscheinungstermin: 1. Januar 1922
- Deutsch
- Abmessung: 229mm x 152mm x 12mm
- Gewicht: 317g
- ISBN-13: 9783642503719
- ISBN-10: 3642503713
- Artikelnr.: 37478684
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
I. Die Affinoralgebra der n-dimensionalen Differentialgeometrie.- 1. Die Gruppen und deren Größen.- 2. Die n-dimensionale Mannigfaltigkeit.- 3. Skalare, ko- und kontravariante Vektoren.- 4. Kontra- und kovariante Affinoren.- 5. Symmetrische und alternierende Affinoren.- 6. Die TYberschiebungen.- 7. Der Fundamentaltensor.- 8. Identifizierung von kontra- und kovarianten Größen.- 9. Die idealen Faktoren des Fundamentaltensors. Gleichberechtigte ideale Faktoren.- 10. Lineare Transformationen.- 11. Die Winkel einer Vp und einer Vq in P.- II. Die Affinoranalysis der n-dimensionalen Differentialgeometrie.- 1. Ortsfunktionen.- 2. Die allgemeine lineare Übertragung.- 3. Die geodätische Übertragung.- 4. Die geodätische Linie und das geodätisch mitbewegte Koordinatensystem.- 5. Einige wichtige Differentiationsregeln.- 6. Parallele Vn? 1 1.- 7. Vq-normale und Vq-bildende Felder.- 8. Kongruenzen. Orthogonalnetze.- 9. Mehrfache Differentiation.- 10. Die geometrische Bedeutung von$$ mathop Klimits^4 $$.- 11. Die Riemannsche Krümmung.- 12. Die Tensoren 2K und 2G.- 13. Die Integrabilitätsbedingungen einer Affinordifferentialgleichung erster Ordnung.- III. Krümmungseigensehaften der Vm in Vn, die sich ohne Verwendung des Riemann-Christoffelsehen Affinors formulieren lassen.- 1.V1 in Vn.- 2. V1 in Vn? 1 in Vn.- 3. Der zweite Fundamentaltensor einer Vn? 1 in Vn.- 4. Hauptkrümmungs- und konjugierte Richtungen einer Vn? 1 in Vn.- 5. Geodätische Linien in Vn? 1 in Vn.- 6. Vm in Vn absolute, relative und erzwungene Krümmung einer Kongruenz.- 7. Die Hauptrichtungen einer Vm in Vn.- 8. Der Hauptsatz des Krümmungsaffinors (Bedingung für eine geodätische Mannigfaltigkeit).- 9. Der Hauptsatz des mittleren Krümmungsvektors. (Bedingung für eine malmannigfaltigkeit).-10. Die Beziehungen zwischen der Klasse einer Vn und dem Freiheitsgrad des mitbewegten Bezugssystems.- 11. Das Krümmungsgebiet und das Krümmungsgebilde einer Vm in Vn.- 12. Der Umbilikalvektor. Besondere Punkte und Richtungen.- 13. Die höheren Krümmungen einer V1 in Vm in Vn.- 14. DieKriimmungsgebiete undHaupttangentenkurven höhererOrdnung einerVm in Vn.- 15. Vm in Vn in Vm in Vn.- 16. Vm in Vn mit lauter axialen Punkten. Übertragung der Eigenschaften der V n? 1 auf Vm.- 17. Erweiterung des Meusnierschen Satzes für Vp? 1 in Vn? 1 in Vn.- 18. V2 in Vn.- 19. V3 in Vn.- IV. Krümmungseigensehaften der Vm in Vn die sieh auf Christoffelsehe Affinoren beziehen.- 1. Vm in Vn Beziehungen der Riemann-Christoffelschen Affinoren.- 2. Absolute, relative und erzwungene Krümmung einer Vm in Vn.- 3. Die Beziehungen der relativen Krümmung zu den Hauptkrümmungsradien und die einfachsten Biegungsinvarianten.- 4. Andere Biegungsinvarianten einer Vm in Vn.- 5. Bedingungen für eine Vm in Vn.- 6. Die Gleichung ?$$ {i_n} = mathop plimits^2 $$.- 7. Vn in Vn+ 1 mit einem zweiten Fundamentaltensor m- ten Ranges, m?n.- 8. Die Vn in Vn+ 1 mit lauter Nabelpunkten.- 9. Die developpablen Vn in Sn+ 1 und die Vn in Sn+ 1 die Biegung zulassen.- 10. n-fache Orthogonalsysteme.- 11. Bedingungen für ein Vm-Element zweiter Ordnung in einer Rn.- 12. Die Identität von Bianchi.- 13. Die konformeuklidischen Mannigfaltigkeiten.- 14. Einige Sätze über Hauptkongruenzen einer Vn.- 15. Die Killingsche Gleichung.- 16. Integration der Killingschen Gleichung.- 17. Allgemeine Folgerungen aus den Integrabilitätsbedingungen.- 18. Der Fall der V2.- 19. Der Fall der V3.- 20. Die Mannigfaltigkeiten mit unbestimmten Hauptrichtungen.- 21. Weitere Untersuchungen über spezielle Vn.- VergleichendesVerzeichnis der von einigen Autoren verwendetenSymbolik.- Vergleichendes Namensverzeichnis.- Übersicht der verschiedenen Indizes.- Sonstige Bemerkungen.- Namen- und Sachverzeichnis.
I. Die Affinoralgebra der n-dimensionalen Differentialgeometrie.- 1. Die Gruppen und deren Größen.- 2. Die n-dimensionale Mannigfaltigkeit.- 3. Skalare, ko- und kontravariante Vektoren.- 4. Kontra- und kovariante Affinoren.- 5. Symmetrische und alternierende Affinoren.- 6. Die TYberschiebungen.- 7. Der Fundamentaltensor.- 8. Identifizierung von kontra- und kovarianten Größen.- 9. Die idealen Faktoren des Fundamentaltensors. Gleichberechtigte ideale Faktoren.- 10. Lineare Transformationen.- 11. Die Winkel einer Vp und einer Vq in P.- II. Die Affinoranalysis der n-dimensionalen Differentialgeometrie.- 1. Ortsfunktionen.- 2. Die allgemeine lineare Übertragung.- 3. Die geodätische Übertragung.- 4. Die geodätische Linie und das geodätisch mitbewegte Koordinatensystem.- 5. Einige wichtige Differentiationsregeln.- 6. Parallele Vn? 1 1.- 7. Vq-normale und Vq-bildende Felder.- 8. Kongruenzen. Orthogonalnetze.- 9. Mehrfache Differentiation.- 10. Die geometrische Bedeutung von$$ mathop Klimits^4 $$.- 11. Die Riemannsche Krümmung.- 12. Die Tensoren 2K und 2G.- 13. Die Integrabilitätsbedingungen einer Affinordifferentialgleichung erster Ordnung.- III. Krümmungseigensehaften der Vm in Vn, die sich ohne Verwendung des Riemann-Christoffelsehen Affinors formulieren lassen.- 1.V1 in Vn.- 2. V1 in Vn? 1 in Vn.- 3. Der zweite Fundamentaltensor einer Vn? 1 in Vn.- 4. Hauptkrümmungs- und konjugierte Richtungen einer Vn? 1 in Vn.- 5. Geodätische Linien in Vn? 1 in Vn.- 6. Vm in Vn absolute, relative und erzwungene Krümmung einer Kongruenz.- 7. Die Hauptrichtungen einer Vm in Vn.- 8. Der Hauptsatz des Krümmungsaffinors (Bedingung für eine geodätische Mannigfaltigkeit).- 9. Der Hauptsatz des mittleren Krümmungsvektors. (Bedingung für eine malmannigfaltigkeit).-10. Die Beziehungen zwischen der Klasse einer Vn und dem Freiheitsgrad des mitbewegten Bezugssystems.- 11. Das Krümmungsgebiet und das Krümmungsgebilde einer Vm in Vn.- 12. Der Umbilikalvektor. Besondere Punkte und Richtungen.- 13. Die höheren Krümmungen einer V1 in Vm in Vn.- 14. DieKriimmungsgebiete undHaupttangentenkurven höhererOrdnung einerVm in Vn.- 15. Vm in Vn in Vm in Vn.- 16. Vm in Vn mit lauter axialen Punkten. Übertragung der Eigenschaften der V n? 1 auf Vm.- 17. Erweiterung des Meusnierschen Satzes für Vp? 1 in Vn? 1 in Vn.- 18. V2 in Vn.- 19. V3 in Vn.- IV. Krümmungseigensehaften der Vm in Vn die sieh auf Christoffelsehe Affinoren beziehen.- 1. Vm in Vn Beziehungen der Riemann-Christoffelschen Affinoren.- 2. Absolute, relative und erzwungene Krümmung einer Vm in Vn.- 3. Die Beziehungen der relativen Krümmung zu den Hauptkrümmungsradien und die einfachsten Biegungsinvarianten.- 4. Andere Biegungsinvarianten einer Vm in Vn.- 5. Bedingungen für eine Vm in Vn.- 6. Die Gleichung ?$$ {i_n} = mathop plimits^2 $$.- 7. Vn in Vn+ 1 mit einem zweiten Fundamentaltensor m- ten Ranges, m?n.- 8. Die Vn in Vn+ 1 mit lauter Nabelpunkten.- 9. Die developpablen Vn in Sn+ 1 und die Vn in Sn+ 1 die Biegung zulassen.- 10. n-fache Orthogonalsysteme.- 11. Bedingungen für ein Vm-Element zweiter Ordnung in einer Rn.- 12. Die Identität von Bianchi.- 13. Die konformeuklidischen Mannigfaltigkeiten.- 14. Einige Sätze über Hauptkongruenzen einer Vn.- 15. Die Killingsche Gleichung.- 16. Integration der Killingschen Gleichung.- 17. Allgemeine Folgerungen aus den Integrabilitätsbedingungen.- 18. Der Fall der V2.- 19. Der Fall der V3.- 20. Die Mannigfaltigkeiten mit unbestimmten Hauptrichtungen.- 21. Weitere Untersuchungen über spezielle Vn.- VergleichendesVerzeichnis der von einigen Autoren verwendetenSymbolik.- Vergleichendes Namensverzeichnis.- Übersicht der verschiedenen Indizes.- Sonstige Bemerkungen.- Namen- und Sachverzeichnis.