23,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
12 °P sammeln
  • Broschiertes Buch

Electrical diagram is foundation of studies in electrical science. A circuit diagram convey many information about the system. Behind any device there are plenty of electrical ingredients which perform their specific tasks, today all the electrical software tools failed to effectively convert the information automatically from a circuit image diagram to digital form. Hence electrical engineers should manually enter all information into computers, and this process takes time and bring errors with high probability. Moreover, when the diagram is hand drawn, the problem is more complicated for any…mehr

Produktbeschreibung
Electrical diagram is foundation of studies in electrical science. A circuit diagram convey many information about the system. Behind any device there are plenty of electrical ingredients which perform their specific tasks, today all the electrical software tools failed to effectively convert the information automatically from a circuit image diagram to digital form. Hence electrical engineers should manually enter all information into computers, and this process takes time and bring errors with high probability. Moreover, when the diagram is hand drawn, the problem is more complicated for any electrical analysis. Thus, in this paper we propose a new method using Artificial Neural Network (ANN) to make a machine that can directly read the electrical symbols from a hand drawn circuit image. The recognition process involves two steps: first step is feature extraction using shape based features, and the second one is a classification procedure using ANN through a back propagation algorithm. The ANN was trained and tested with different hand drawn electrical images.
Autorenporträt
Mahdi Rabbani is completed his master degree in computer cognition technology in university of Mysore in India in 2014, he has completed his bachelor degree in computer engineering in Iran, He is the first author of Hand Drawn Optical Circuit Recognition which has published in Procedia Computer Science.