Handbook of Approximate Bayesian Computation
Herausgeber: Sisson, Scott A.; Beaumont, Mark; Fan, Yanan
Handbook of Approximate Bayesian Computation
Herausgeber: Sisson, Scott A.; Beaumont, Mark; Fan, Yanan
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
Andere Kunden interessierten sich auch für
- Osvaldo A. Martin (CONICET and Aalto University)Bayesian Modeling and Computation in Python104,99 €
- Handbook of Bayesian Variable Selection54,99 €
- Handbook of Spatial Epidemiology104,99 €
- Handbook of Neuroimaging Data Analysis106,99 €
- Handbook of Matching and Weighting Adjustments for Causal Inference319,99 €
- Handbook of Bayesian Variable Selection142,99 €
- John Bryant (UK University of Exeter)Bayesian Demographic Estimation and Forecasting72,99 €
-
-
-
The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Chapman & Hall/CRC Handbooks of Modern Statistical Methods
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 680
- Erscheinungstermin: 18. Dezember 2020
- Englisch
- Abmessung: 234mm x 156mm x 36mm
- Gewicht: 1040g
- ISBN-13: 9780367733728
- ISBN-10: 0367733722
- Artikelnr.: 68471313
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Chapman & Hall/CRC Handbooks of Modern Statistical Methods
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 680
- Erscheinungstermin: 18. Dezember 2020
- Englisch
- Abmessung: 234mm x 156mm x 36mm
- Gewicht: 1040g
- ISBN-13: 9780367733728
- ISBN-10: 0367733722
- Artikelnr.: 68471313
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Scott Sission is Professor, ARC Future Fellow and Head of Statistics in the School of Mathematics and Statistics at UNSW. Yanan Fan is a Senior Lecturer at the School of Mathematics and Statistics at UNSW. Mark Beaumont is Professor of Statistics at the University of Bristol.
Introduction
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek
Introduction
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek