Handbook of Fuel Cells
Advances in Electrocatalysis, Materials, Diagnostics and Durability, Volumes 5 and 6
Herausgeber: Vielstich, Wolf; Gasteiger, Hubert A.; Yokokawa, Harumi
Handbook of Fuel Cells
Advances in Electrocatalysis, Materials, Diagnostics and Durability, Volumes 5 and 6
Herausgeber: Vielstich, Wolf; Gasteiger, Hubert A.; Yokokawa, Harumi
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A timely addition to the highly acclaimed four-volume handbook set; volumes 5 and 6 highlight recent developments, particularly in the fields of new materials, molecular modeling and durability. Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research. …mehr
- Wolf VielstichHandbook of Fuel Cells, 6 Volume Set4.076,99 €
- M H NehrirModeling and Control of Fuel Cells160,99 €
- Vladimir S. BagotskyFuel Cells, Second Edition103,99 €
- Fuel Cell Science217,99 €
- Biao HuangDynamic Modeling and Predictive Control in Solid Oxide Fuel Cells177,99 €
- James LarminieElectric Vehicle Technology Explained149,99 €
- Andrzej WieckowskiFuel Cell Catalysis229,99 €
-
-
-
Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 1136
- Erscheinungstermin: 1. Mai 2009
- Englisch
- Abmessung: 272mm x 310mm x 109mm
- Gewicht: 3824g
- ISBN-13: 9780470723111
- ISBN-10: 0470723114
- Artikelnr.: 25050469
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 1136
- Erscheinungstermin: 1. Mai 2009
- Englisch
- Abmessung: 272mm x 310mm x 109mm
- Gewicht: 3824g
- ISBN-13: 9780470723111
- ISBN-10: 0470723114
- Artikelnr.: 25050469
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Foreword.
Preface.
Abbreviations and Acronyms.
PART 1: ELECTROCATALYST MATERIALS FOR LOW TEMPERATURE FUEL CELLS.
Novel Catalysts.
1. Platinum monolayer oxygen reduction electrocatalysts (R. R. Adzic and F.
H. B. Lima).
2. Oxygen reduction on platinum bimetallic alloy catalysts (V. R.
Stamenkovic and N. M. Markovic).
3. Dealloyed Pt bimetallic electrocatalysts for oxygen reduction (P.
Strasser).
4. Transition metal/polymer catalysts for O2 reduction (C. M. Johnston, P.
Piela, and P. Zelenay).
5. Time to move beyond transition metal-N-C catalysts for oxygen reduction
(A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn).
6. Catalysts for the electro-oxidation of small molecules (M. Watanabe and
H. Uchida).
7. Influence of size on the electrocatalytic activities of supported.
metal nanoparticles in fuel cell-related reactions (Frédéric Maillard,
Sergey Pronkin, and Elena R. Savinova).
8. Enzyme catalysis in biological fuel cells (Scott Calabrese Barton).
Fundamental Catalysis Models.
9. Density functional theory applied to electrocatalysis (S. Venkatachalam,
and T. Jacob).
10. First-principles modeling for the electrooxidation of small.
molecules (M. Neurock).
11. On the pathways of methanol and ethanol oxidation (W. Vielstich, V. A.
Paganin, O. Brandao Alves, and E. G. Ciapina).
12. Reaction pathway analysis and reaction intermediate detection.
via simultaneous differential electrochemical mass spectrometry.
(DEMS) and attenuated total reflection fourier transform.
infrared spectroscopy (ATR-FTIRS) (M. Heinen, Z. Jusys, and R. J. Behm).
13. Methanol oxidation on oxidized Pt surface (H. Varela, E. Sitta, and B.
C. Batista).
14. Mechanistic aspects of carbon monoxide oxidation (T. Iwasita and E. G.
Ciapina).
Catalyst Durability.
15. Platinum dissolution models and voltage cycling effects: platinum
dissolution in polymer electrolyte fuel cell (PEFC) and low-temperature
fuel cells (K. Ota and Y. Koizumi).
16. Catalyst and catalyst-support durability (F. T. Wagner, S. G. Yan, and
P. T. Yu).
17. Effects of contaminants on catalyst activity (F. H. Garzon and F. A.
Uribe).
PART 2: CONDUCTIVE MEMBRANES FOR LOWTEMPERATURE Fuel Cells.
Novel Materials.
18. Design rules for the improvement of the performance of
hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)
(M. Gross, G. Maier, T. Fuller, S. MacKinnon and C. Gittleman).
19. High-temperature polybenzimidazole-based membranes (D. C. Seel, B. C.
Benicewicz, L. Xiao, and T. J. Schmidt).
20. Radiation-grafted proton conducting membranes (L. Gubler and G. G.
Scherer).
21. Alkaline anion-exchange membranes for low-temperature fuel cell
application (J. R. Varcoe, S. D. Poynton, and R. C. T. Slade).
Characterization.
22. Colloidal structure of ionomer solutions (G. Gebel).
23. Conductivity, permeability, and ohmic shorting of ionomeric membranes
(C. K. Mittelsteadt and H. Liu).
Membrane Durability.
24. Highly durable PFSA membranes (E. Endoh).
25. Factors influencing ionomer degradation (M. Inaba and H. Yamada).
26. Chemical and mechanical membrane degradation (W. K. Liu, S. J. C.
Cleghorn, B. E. Delaney, and M. Crum).
27. Mechanical durability characterization and modeling of ionomeric
membranes (Y. H. Lai and D. A. Dillard).
PART 3: MATERIALS FOR HIGH TEMPERATURE FUEL CELLS.
Fundamental Models.
28. Mechanistic understanding and electrochemical modeling of mixed
conducting (SOFC) electrodes (R. Merkle, J. Maier, and J. Fleig).
29. Elementary kinetic modeling of solid oxide fuel cell electrode
reactions (S. B. Adler and W. G. Bessler).
30. Mechanical stability (A. Atkinson and A. J. Marquis).
Novel Materials.
31. Factors limiting the low-temperature operation of SOFCs (J. David
Carter, T. A. Cruse, B. J. Ingram, and M. Krumpelt).
32. New oxide cathodes and anodes (J. A. Kilner and J. T. S. Irvine).
33. New high-temperature proton conductors for fuel cells and gas
separation membranes (R. Haugsrud).
34. Nanoimpact on electrode and electrolyte layers with
Micro-Electro-Mechanical System (MEMS) technique (Y. D. Premchand, A.
Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. M. Ryll, B. Scherrer, R.
Tölke, Z. Yang, A. Harvey, A. Evans, L. Xu, and L. J. Gauckler).
Materials Durability.
35. Durability of metallic interconnects and protective coatings (M.
Mogensen and K. V. Hansen).
36. Impact of impurities and interface reaction on electrochemical activity
(M. Mogensen and K. V. Hansen).
37. Application of secondary ion mass spectrometry (SIMS) technique on the
durability of solid oxide fuel cell (SOFC) materials (K. Yamaji, N. Sakai,
H. Kishimoto, T. Horita, M. E. Brito and H. Yokokawa).
38. Durability of cathodes including Cr poisoning (N. H. Menzler, A. Mai,
and D. Stöver).
39. Durable sealing concepts with glass sealants or compression seals (H.
P. Buchkremer and R. Conradt).
PART 4: ADVANCED DIAGNOSTICS, MODELS, & DESIGN.
Low-Temperature Fuel Cells.
40. Direct three-dimensional visualization and morphological analysis of Pt
particles supported on carbon by transmission electron microtomography (T.
Ito, U. Matsuwaki, Y. Otsuka, G. Katagiri, M. Kato, K. Matsubara, Y.
Aoyama, and H. Jinnai).
41. Design approaches for determining local current and membrane resistance
in polymer electrolyte fuel cells (PEFCs) (S. A. Freunberger, M. Reum, and
F. N. B?uchi).
42. Heat and water transport models for polymer electrolyte fuel cells (U.
Pasaogullari).
43. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance
model (W. Gu, D. R. Baker, Y. Liu, and H. A. Gasteiger).
44. Use of neutron imaging for proton exchange membrane fuel cell (PEMFC)
performance analysis and design (T. A. Trabold, J. P. Owejan, J. J.
Gagliardo, D. L. Jacobson, D. S. Hussey, and M. Arif).
45. Local transient techniques in polymer electrolyte fuel cell (PEFC)
diagnostics (I. A. Schneider and G. G. Scherer).
46. Proton exchange membrane fuel cell (PEMFC) flow-field design for
improved water management (J. S. Allen, S. Y. Son, S. H. Collicott).
47. Performance during start-up of proton exchange membrane (PEM) fuel
cells at subfreezing conditions (E. L. Thompson, W. Gu, and H. A.
Gasteiger).
48. Performance impact of cationic contaminants (B. S. Pivovar, B. Kienitz,
T. Rockward, F. Uribe, and F. Garzon).
49. Modeling the impact of cation contamination in a polymer electrolyte
membrane fuel cell (T. A. Greszler, T. E. Moylan, and H. A. Gasteiger).
50. Performance modeling and cell design for high concentration methanol
fuel cells (C. E. Shaffer and C. Y. Wang).
51. Design concepts and durability challenges for mini fuel cells (Shimshon
Gottesfeld).
High-Temperature Fuel Cells.
52. New diagnostic methods for the polarized state (T. Kawada).
53. Electrochemical impedance spectroscopy as diagnostic tool (S. H.
Jensen, J. Hjelm, A. Hagen, and M. Mogensen).
54. Observation and modeling of thermal stresses in cells and cell stacks
(H. Yakabe).
PART 5: PERFORMANCE DEGRADATION.
Low-Temperature Fuel Cells.
55. Carbon-support corrosion mechanisms and models (K. G. Gallagher, R. M.
Darling, and T. F. Fuller).
56. Electrode degradation mechanisms studies by current distribution
measurements (R. N. Carter, W. Gu, B. Brady, P. T. Yu, K. Subramanian, and
H. A. Gasteiger).
57. Electron microscopy to study membrane electrode assembly (MEA)
materials and structure degradation (M. Chatenet, L. Guetaz, and F.
Maillard).
58. Proton exchange membrane fuel cell degradation: mechanisms and recent
progress (T. Madden, M. Perry, L. Protsailo, M. Gummalla, S. Burlatsky, N.
Cipollini, S. Motupally, and T. Jarvi).
59. Cold-start durability of membrane-electrode assemblies (C. Y. Wang, X.
G. Yang, Y. Tabuchi, and F. Kagami).
60. Field experience with fuel cell vehicles (K. Wipke, S. Sprik, J. Kurtz,
and J. Garbak).
61. Membrane and catalyst performance targets for automotive fuel cells (A.
Iiyama, K. Shinohara, S. Iguchi, and A. Daimaru).
62. Field experience with portable DMFC products (J. Müller).
High-Temperature Fuel Cells.
63. Overview of solid oxide fuel cell degradation (H. Yokokawa).
64. Methane reforming kinetics, carbon deposition, and redox durability of
Ni/8 yttria-stabilized zirconia (YSZ) anodes (E. Ivers-Tiffée, H.
Timmermann, A. Leonide, N. H. Menzler, and J. Malzbender).
65. Sulfur poisoning on Ni catalyst and anodes (J. B¿gild Hansen and J.
Rostrup-Nielsen).
66. Ni shorting in relation to acid-base equilibrium of molten carbonate
for molten cabonate fuel cell (MCFC) application (S. Mitsushima).
67. Impact of impurities on reliability of materials in solid oxide fuel
cell (SOFC) stack/modules (H. Yokokawa, N. Sakai, T. Horita, and K.
Yamaji).
68. Field experience with molten carbonate fuel cells (MCFCs) and solid
oxide fuel cells (SOFCs) with an emphasis on degradation (H. Frey, A.
Kessler, W. Münch, M. Edel and V. Nerlich).
Subject Index.
Foreword.
Preface.
Abbreviations and Acronyms.
PART 1: ELECTROCATALYST MATERIALS FOR LOW TEMPERATURE FUEL CELLS.
Novel Catalysts.
1. Platinum monolayer oxygen reduction electrocatalysts (R. R. Adzic and F.
H. B. Lima).
2. Oxygen reduction on platinum bimetallic alloy catalysts (V. R.
Stamenkovic and N. M. Markovic).
3. Dealloyed Pt bimetallic electrocatalysts for oxygen reduction (P.
Strasser).
4. Transition metal/polymer catalysts for O2 reduction (C. M. Johnston, P.
Piela, and P. Zelenay).
5. Time to move beyond transition metal-N-C catalysts for oxygen reduction
(A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn).
6. Catalysts for the electro-oxidation of small molecules (M. Watanabe and
H. Uchida).
7. Influence of size on the electrocatalytic activities of supported.
metal nanoparticles in fuel cell-related reactions (Frédéric Maillard,
Sergey Pronkin, and Elena R. Savinova).
8. Enzyme catalysis in biological fuel cells (Scott Calabrese Barton).
Fundamental Catalysis Models.
9. Density functional theory applied to electrocatalysis (S. Venkatachalam,
and T. Jacob).
10. First-principles modeling for the electrooxidation of small.
molecules (M. Neurock).
11. On the pathways of methanol and ethanol oxidation (W. Vielstich, V. A.
Paganin, O. Brandao Alves, and E. G. Ciapina).
12. Reaction pathway analysis and reaction intermediate detection.
via simultaneous differential electrochemical mass spectrometry.
(DEMS) and attenuated total reflection fourier transform.
infrared spectroscopy (ATR-FTIRS) (M. Heinen, Z. Jusys, and R. J. Behm).
13. Methanol oxidation on oxidized Pt surface (H. Varela, E. Sitta, and B.
C. Batista).
14. Mechanistic aspects of carbon monoxide oxidation (T. Iwasita and E. G.
Ciapina).
Catalyst Durability.
15. Platinum dissolution models and voltage cycling effects: platinum
dissolution in polymer electrolyte fuel cell (PEFC) and low-temperature
fuel cells (K. Ota and Y. Koizumi).
16. Catalyst and catalyst-support durability (F. T. Wagner, S. G. Yan, and
P. T. Yu).
17. Effects of contaminants on catalyst activity (F. H. Garzon and F. A.
Uribe).
PART 2: CONDUCTIVE MEMBRANES FOR LOWTEMPERATURE Fuel Cells.
Novel Materials.
18. Design rules for the improvement of the performance of
hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)
(M. Gross, G. Maier, T. Fuller, S. MacKinnon and C. Gittleman).
19. High-temperature polybenzimidazole-based membranes (D. C. Seel, B. C.
Benicewicz, L. Xiao, and T. J. Schmidt).
20. Radiation-grafted proton conducting membranes (L. Gubler and G. G.
Scherer).
21. Alkaline anion-exchange membranes for low-temperature fuel cell
application (J. R. Varcoe, S. D. Poynton, and R. C. T. Slade).
Characterization.
22. Colloidal structure of ionomer solutions (G. Gebel).
23. Conductivity, permeability, and ohmic shorting of ionomeric membranes
(C. K. Mittelsteadt and H. Liu).
Membrane Durability.
24. Highly durable PFSA membranes (E. Endoh).
25. Factors influencing ionomer degradation (M. Inaba and H. Yamada).
26. Chemical and mechanical membrane degradation (W. K. Liu, S. J. C.
Cleghorn, B. E. Delaney, and M. Crum).
27. Mechanical durability characterization and modeling of ionomeric
membranes (Y. H. Lai and D. A. Dillard).
PART 3: MATERIALS FOR HIGH TEMPERATURE FUEL CELLS.
Fundamental Models.
28. Mechanistic understanding and electrochemical modeling of mixed
conducting (SOFC) electrodes (R. Merkle, J. Maier, and J. Fleig).
29. Elementary kinetic modeling of solid oxide fuel cell electrode
reactions (S. B. Adler and W. G. Bessler).
30. Mechanical stability (A. Atkinson and A. J. Marquis).
Novel Materials.
31. Factors limiting the low-temperature operation of SOFCs (J. David
Carter, T. A. Cruse, B. J. Ingram, and M. Krumpelt).
32. New oxide cathodes and anodes (J. A. Kilner and J. T. S. Irvine).
33. New high-temperature proton conductors for fuel cells and gas
separation membranes (R. Haugsrud).
34. Nanoimpact on electrode and electrolyte layers with
Micro-Electro-Mechanical System (MEMS) technique (Y. D. Premchand, A.
Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. M. Ryll, B. Scherrer, R.
Tölke, Z. Yang, A. Harvey, A. Evans, L. Xu, and L. J. Gauckler).
Materials Durability.
35. Durability of metallic interconnects and protective coatings (M.
Mogensen and K. V. Hansen).
36. Impact of impurities and interface reaction on electrochemical activity
(M. Mogensen and K. V. Hansen).
37. Application of secondary ion mass spectrometry (SIMS) technique on the
durability of solid oxide fuel cell (SOFC) materials (K. Yamaji, N. Sakai,
H. Kishimoto, T. Horita, M. E. Brito and H. Yokokawa).
38. Durability of cathodes including Cr poisoning (N. H. Menzler, A. Mai,
and D. Stöver).
39. Durable sealing concepts with glass sealants or compression seals (H.
P. Buchkremer and R. Conradt).
PART 4: ADVANCED DIAGNOSTICS, MODELS, & DESIGN.
Low-Temperature Fuel Cells.
40. Direct three-dimensional visualization and morphological analysis of Pt
particles supported on carbon by transmission electron microtomography (T.
Ito, U. Matsuwaki, Y. Otsuka, G. Katagiri, M. Kato, K. Matsubara, Y.
Aoyama, and H. Jinnai).
41. Design approaches for determining local current and membrane resistance
in polymer electrolyte fuel cells (PEFCs) (S. A. Freunberger, M. Reum, and
F. N. B?uchi).
42. Heat and water transport models for polymer electrolyte fuel cells (U.
Pasaogullari).
43. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance
model (W. Gu, D. R. Baker, Y. Liu, and H. A. Gasteiger).
44. Use of neutron imaging for proton exchange membrane fuel cell (PEMFC)
performance analysis and design (T. A. Trabold, J. P. Owejan, J. J.
Gagliardo, D. L. Jacobson, D. S. Hussey, and M. Arif).
45. Local transient techniques in polymer electrolyte fuel cell (PEFC)
diagnostics (I. A. Schneider and G. G. Scherer).
46. Proton exchange membrane fuel cell (PEMFC) flow-field design for
improved water management (J. S. Allen, S. Y. Son, S. H. Collicott).
47. Performance during start-up of proton exchange membrane (PEM) fuel
cells at subfreezing conditions (E. L. Thompson, W. Gu, and H. A.
Gasteiger).
48. Performance impact of cationic contaminants (B. S. Pivovar, B. Kienitz,
T. Rockward, F. Uribe, and F. Garzon).
49. Modeling the impact of cation contamination in a polymer electrolyte
membrane fuel cell (T. A. Greszler, T. E. Moylan, and H. A. Gasteiger).
50. Performance modeling and cell design for high concentration methanol
fuel cells (C. E. Shaffer and C. Y. Wang).
51. Design concepts and durability challenges for mini fuel cells (Shimshon
Gottesfeld).
High-Temperature Fuel Cells.
52. New diagnostic methods for the polarized state (T. Kawada).
53. Electrochemical impedance spectroscopy as diagnostic tool (S. H.
Jensen, J. Hjelm, A. Hagen, and M. Mogensen).
54. Observation and modeling of thermal stresses in cells and cell stacks
(H. Yakabe).
PART 5: PERFORMANCE DEGRADATION.
Low-Temperature Fuel Cells.
55. Carbon-support corrosion mechanisms and models (K. G. Gallagher, R. M.
Darling, and T. F. Fuller).
56. Electrode degradation mechanisms studies by current distribution
measurements (R. N. Carter, W. Gu, B. Brady, P. T. Yu, K. Subramanian, and
H. A. Gasteiger).
57. Electron microscopy to study membrane electrode assembly (MEA)
materials and structure degradation (M. Chatenet, L. Guetaz, and F.
Maillard).
58. Proton exchange membrane fuel cell degradation: mechanisms and recent
progress (T. Madden, M. Perry, L. Protsailo, M. Gummalla, S. Burlatsky, N.
Cipollini, S. Motupally, and T. Jarvi).
59. Cold-start durability of membrane-electrode assemblies (C. Y. Wang, X.
G. Yang, Y. Tabuchi, and F. Kagami).
60. Field experience with fuel cell vehicles (K. Wipke, S. Sprik, J. Kurtz,
and J. Garbak).
61. Membrane and catalyst performance targets for automotive fuel cells (A.
Iiyama, K. Shinohara, S. Iguchi, and A. Daimaru).
62. Field experience with portable DMFC products (J. Müller).
High-Temperature Fuel Cells.
63. Overview of solid oxide fuel cell degradation (H. Yokokawa).
64. Methane reforming kinetics, carbon deposition, and redox durability of
Ni/8 yttria-stabilized zirconia (YSZ) anodes (E. Ivers-Tiffée, H.
Timmermann, A. Leonide, N. H. Menzler, and J. Malzbender).
65. Sulfur poisoning on Ni catalyst and anodes (J. B¿gild Hansen and J.
Rostrup-Nielsen).
66. Ni shorting in relation to acid-base equilibrium of molten carbonate
for molten cabonate fuel cell (MCFC) application (S. Mitsushima).
67. Impact of impurities on reliability of materials in solid oxide fuel
cell (SOFC) stack/modules (H. Yokokawa, N. Sakai, T. Horita, and K.
Yamaji).
68. Field experience with molten carbonate fuel cells (MCFCs) and solid
oxide fuel cells (SOFCs) with an emphasis on degradation (H. Frey, A.
Kessler, W. Münch, M. Edel and V. Nerlich).
Subject Index.