705,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
353 °P sammeln
  • Gebundenes Buch

This Handbook of Numerical Simulation of In-Flight Icing covers an array of methodologies and technologies on numerical simulation of in-flight icing and its applications. Comprised of contributions from internationally recognized experts from the Americas, Asia, and the EU, this authoritative, self-contained reference includes best practices and specification data spanning the gamut of simulation tools available internationally that can be used to speed up the certification of aircraft and make them safer to fly into known icing. The collection features nine sections concentrating on…mehr

Produktbeschreibung
This Handbook of Numerical Simulation of In-Flight Icing covers an array of methodologies and technologies on numerical simulation of in-flight icing and its applications. Comprised of contributions from internationally recognized experts from the Americas, Asia, and the EU, this authoritative, self-contained reference includes best practices and specification data spanning the gamut of simulation tools available internationally that can be used to speed up the certification of aircraft and make them safer to fly into known icing. The collection features nine sections concentrating on aircraft, rotorcraft, jet engines, UAVs; ice protection systems, including hot-air, electrothermal, and others; sensors and probes, CFD in the aid of testing, flight simulators, and certification process acceleration methods. Incorporating perspectives from academia, commercial, government R&D, the book is ideal for a range of engineers and scientists concerned with in-flight icing applications.


Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Professor Habashi holds a Ph.D. in Aeronautical Engineering from Cornell and has been active with Aerospace OEMs internationally, with over 450 publications, more than half targeting the development and deployment of 3-D simulation systems for the certification of aircraft, rotorcraft, and jet engines for flying into known icing. After acting for 24 years as an aerodynamics consultant to Pratt & Whitney Canada for the CFD of jet engines (90 joint publications), his expanding research was sponsored through 3 successive NSERC (Natural Sciences and Engineering Research Council of Canada) Industrial 5-year Research Chairs by Bombardier Aerospace, Bell Helicopter, CAE Simulators, Silicon Graphics, and Lockheed Martin focusing on high-performance computing applied to aerodynamic design ranging from the subsonic to the hypersonic regimes. He is the founder of Newmerical Technologies International Inc. which in 2000 started developing the FENSAP-ICE in-flight icing simulation system, acquired by ANSYS in 2015, following which he started CERTIF-ICE Inc., planning and conducting in Canada the natural icing campaigns of two aircraft: COMAC's ARJ21 (turbofan) and AVIC's Y-12F (turboprop).  He is a Fellow of Pratt & Whitney Canada, the Academy of Sciences of the Royal Society of Canada, the Canadian Academy of Engineering, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. He has received prizes straddling the scientific and technology transfer worlds, among them the British Association Medal for Great Distinction in Mechanical Engineering, the E.W.R. Steacie Fellowship from NSERC for Outstanding Research in Computational Aerodynamics early in his academic career, followed by the Technology Partnership Award of Pratt & Whitney Canada for Advancing Numerical Technologies of Gas Turbine Applications, the Concordia University Senior Research Fellow Award for Excellence in Research, the Cray Gigaflop Performance Award and the Computerworld Smithsonian Award for the Fastest Computer Code in the World. In 1998 his work has been selected as one of the top 10 discoveries by the Québec Science Magazine, and he was selected by The Gazette newspaper as one of the 10 top scientists in Montreal in its series Montreal the Year 2000. In 2 books distributed internationally, NSERC named him as one of 12 Great Canadian Stories, and the Canadian Foundation for Innovation named him as one of Canada's top 25 scientists. In 2012, the Jury of Innovation-Inspiration selected him as one of the 5 most innovative persons in the aerospace sector of the Greater Montreal area, along with the Presidents of Bombardier, Pratt & Whitney, and CAE. In 2006, the Canadian Society of CFD honored him with a Lifetime Achievement Award, and in 2009 he received the Pratt & Whitney Canada Honorary Pioneer Award. In 2009 he received the prestigious Killam Prize for engineering from the Canada Council for the Arts, a $100,000 tax-free award. In 2010, the Aerospace Industries Association of Canada awarded him its inaugural James C. Floyd Award for Recent Canadian Aerospace Achievement, and in 2011 he received the McCurdy Award from the Canadian Aerospace & Space Institute for outstanding achievement in the science and creative aspects of engineering relating to aeronautics and space research. In 2012, the McGill Faculty of Engineering awarded him the inaugural Christophe Pierre Award for Research Excellence. In 2012, Professor Habashi received Québec's highest distinction (Knighthood): "Chevalier de l'ordre national du Québec", followed by the Governor General of Canada awarding him "The Queen Elizabeth II Diamond Jubilee Medal" for his contributions to Canadian science.