E. Jouini / J. Cvitanic / Marek Musiela (eds.)
Handbooks in Mathematical Finance
Option Pricing, Interest Rates and Risk Management
Herausgeber: Cvitanic, J.; Musiela, Marek; Jouini, E.
E. Jouini / J. Cvitanic / Marek Musiela (eds.)
Handbooks in Mathematical Finance
Option Pricing, Interest Rates and Risk Management
Herausgeber: Cvitanic, J.; Musiela, Marek; Jouini, E.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This 2001 handbook is a comprehensive reference work on mathematical finance, with chapters written by leading researchers.
Andere Kunden interessierten sich auch für
- Holger IhrigFinanzmathematik29,95 €
- Mathematical Finance: Theories and Tools156,99 €
- Mathematical Finance154,99 €
- Mathematical Finance155,99 €
- Quantitative Analysis in Financial Markets: Collected Papers of the New York University Mathematical Finance Seminar149,99 €
- Mark Suresh JoshiMore Mathematical Finance55,99 €
- Mathematical Finance153,99 €
-
-
-
This 2001 handbook is a comprehensive reference work on mathematical finance, with chapters written by leading researchers.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 686
- Erscheinungstermin: 13. April 2012
- Englisch
- Abmessung: 250mm x 175mm x 41mm
- Gewicht: 1343g
- ISBN-13: 9780521792370
- ISBN-10: 0521792371
- Artikelnr.: 21561263
- Verlag: Cambridge University Press
- Seitenzahl: 686
- Erscheinungstermin: 13. April 2012
- Englisch
- Abmessung: 250mm x 175mm x 41mm
- Gewicht: 1343g
- ISBN-13: 9780521792370
- ISBN-10: 0521792371
- Artikelnr.: 21561263
Elyès Jouini is Professor of Mathematics at the University of Paris IX Dauphine. He is Visiting Associate Professor of Finance at the Stern School of Business, New York University, and Head of the Finance and Insurance Laboratory at CREST-INSEE.
Introduction; Part I. Option Pricing: Theory and Practice: 1. Arbitrage
theory Yu. M. Kabanov; 2. Market models with frictions: arbitrage and
pricing issues E. Jouini and C. Napp; 3. American options: symmetry
properties J. Detemple; 4. Purely discontinuous asset price processes D.
Madan; 5. Latent variable models for stochastic discount factors R. Garcia
and É. Renault; 6. Monte Carlo methods for security pricing P. Boyle, M.
Broadie and P. Glasserman; Part II. Interest Rate Modeling: 7. A geometric
view of interest rate theory T. Bjork; 8. Towards a central interest rate
model A. Brace, T. Dun and G. Barton; 9. Infinite dimensional diffusions,
Kolmogorov equations and interest rate models B. Goldys and M. Musiela; 10.
Libor market model with semimartingales F. Jamshidian; 11. Modeling of
forward Libor and swap rates M. Rutkowski; Part III. Risk Management and
Hedging: 12. Credit risk modeling, intensity based approach T. Bielecki and
M. Rutkowski; 13. Towards a theory of volatility trading P. Carr and D.
Madan; 14. Shortfall risk in long-term hedging with short-term futures
contracts P. Glasserman; 15. Numerical comparison and local
risk-minimisation and mean-variance hedging D. Heath, E. Platen and M.
Schweizer; 16. A guided tour through quadratic hedging approaches M.
Schweizer; Part IV. Utility Maximization: 17. Theory of portfolio
optimization in markets with frictions J. Cvitanic; 18. Bayesian adaptive
portfolio optimization I. Karatzas and X. Zhao.
theory Yu. M. Kabanov; 2. Market models with frictions: arbitrage and
pricing issues E. Jouini and C. Napp; 3. American options: symmetry
properties J. Detemple; 4. Purely discontinuous asset price processes D.
Madan; 5. Latent variable models for stochastic discount factors R. Garcia
and É. Renault; 6. Monte Carlo methods for security pricing P. Boyle, M.
Broadie and P. Glasserman; Part II. Interest Rate Modeling: 7. A geometric
view of interest rate theory T. Bjork; 8. Towards a central interest rate
model A. Brace, T. Dun and G. Barton; 9. Infinite dimensional diffusions,
Kolmogorov equations and interest rate models B. Goldys and M. Musiela; 10.
Libor market model with semimartingales F. Jamshidian; 11. Modeling of
forward Libor and swap rates M. Rutkowski; Part III. Risk Management and
Hedging: 12. Credit risk modeling, intensity based approach T. Bielecki and
M. Rutkowski; 13. Towards a theory of volatility trading P. Carr and D.
Madan; 14. Shortfall risk in long-term hedging with short-term futures
contracts P. Glasserman; 15. Numerical comparison and local
risk-minimisation and mean-variance hedging D. Heath, E. Platen and M.
Schweizer; 16. A guided tour through quadratic hedging approaches M.
Schweizer; Part IV. Utility Maximization: 17. Theory of portfolio
optimization in markets with frictions J. Cvitanic; 18. Bayesian adaptive
portfolio optimization I. Karatzas and X. Zhao.
Introduction; Part I. Option Pricing: Theory and Practice: 1. Arbitrage
theory Yu. M. Kabanov; 2. Market models with frictions: arbitrage and
pricing issues E. Jouini and C. Napp; 3. American options: symmetry
properties J. Detemple; 4. Purely discontinuous asset price processes D.
Madan; 5. Latent variable models for stochastic discount factors R. Garcia
and É. Renault; 6. Monte Carlo methods for security pricing P. Boyle, M.
Broadie and P. Glasserman; Part II. Interest Rate Modeling: 7. A geometric
view of interest rate theory T. Bjork; 8. Towards a central interest rate
model A. Brace, T. Dun and G. Barton; 9. Infinite dimensional diffusions,
Kolmogorov equations and interest rate models B. Goldys and M. Musiela; 10.
Libor market model with semimartingales F. Jamshidian; 11. Modeling of
forward Libor and swap rates M. Rutkowski; Part III. Risk Management and
Hedging: 12. Credit risk modeling, intensity based approach T. Bielecki and
M. Rutkowski; 13. Towards a theory of volatility trading P. Carr and D.
Madan; 14. Shortfall risk in long-term hedging with short-term futures
contracts P. Glasserman; 15. Numerical comparison and local
risk-minimisation and mean-variance hedging D. Heath, E. Platen and M.
Schweizer; 16. A guided tour through quadratic hedging approaches M.
Schweizer; Part IV. Utility Maximization: 17. Theory of portfolio
optimization in markets with frictions J. Cvitanic; 18. Bayesian adaptive
portfolio optimization I. Karatzas and X. Zhao.
theory Yu. M. Kabanov; 2. Market models with frictions: arbitrage and
pricing issues E. Jouini and C. Napp; 3. American options: symmetry
properties J. Detemple; 4. Purely discontinuous asset price processes D.
Madan; 5. Latent variable models for stochastic discount factors R. Garcia
and É. Renault; 6. Monte Carlo methods for security pricing P. Boyle, M.
Broadie and P. Glasserman; Part II. Interest Rate Modeling: 7. A geometric
view of interest rate theory T. Bjork; 8. Towards a central interest rate
model A. Brace, T. Dun and G. Barton; 9. Infinite dimensional diffusions,
Kolmogorov equations and interest rate models B. Goldys and M. Musiela; 10.
Libor market model with semimartingales F. Jamshidian; 11. Modeling of
forward Libor and swap rates M. Rutkowski; Part III. Risk Management and
Hedging: 12. Credit risk modeling, intensity based approach T. Bielecki and
M. Rutkowski; 13. Towards a theory of volatility trading P. Carr and D.
Madan; 14. Shortfall risk in long-term hedging with short-term futures
contracts P. Glasserman; 15. Numerical comparison and local
risk-minimisation and mean-variance hedging D. Heath, E. Platen and M.
Schweizer; 16. A guided tour through quadratic hedging approaches M.
Schweizer; Part IV. Utility Maximization: 17. Theory of portfolio
optimization in markets with frictions J. Cvitanic; 18. Bayesian adaptive
portfolio optimization I. Karatzas and X. Zhao.