51,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

The primary focus of this work is an assessment of heat transfer to and from a reversible thermosiphon imbedded in porous media. The interest in this study is the improvement of underground thermal energy storage (UTES) system performance with an innovative ground coupling using an array of reversible (pump-assisted) thermosiphons for air conditioning or space cooling applications. The dominant mechanisms, including the potential for heat transfer enhancement due to natural convection, of seasonal storage of "cold" in water-saturated porous media is evaluated experimentally and numerically.

Produktbeschreibung
The primary focus of this work is an assessment of heat transfer to and from a reversible thermosiphon imbedded in porous media. The interest in this study is the improvement of underground thermal energy storage (UTES) system performance with an innovative ground coupling using an array of reversible (pump-assisted) thermosiphons for air conditioning or space cooling applications. The dominant mechanisms, including the potential for heat transfer enhancement due to natural convection, of seasonal storage of "cold" in water-saturated porous media is evaluated experimentally and numerically.
Autorenporträt
Graduated from Georgian Technical University, Georgia with Honors Diploma in Mechanical Engineering (1992), holds a MS degree in Renewable Energy (1999) from University of Oldenburg, Germany and a PhD in Mechanical Engineering (2012) from University of Utah, United States.