207,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

The book describes how the utilization of high-carbon slag/pond ash/fly ash for making value-added ceramics is useful for the electrical sectors. Since waste materials are currently endangering our environment, ways of utilizing them have become a global challenge. Currently, R&D work is being carried out to utilize these materials for producing value-added products. This book details the investigations to utilize fly ash (FA) and pond ash (PA) - both waste materials from thermal power plants - with high-carbon ferrochrome (HCFC) slag (by-product of the ferrochrome industry), for producing a…mehr

Produktbeschreibung
The book describes how the utilization of high-carbon slag/pond ash/fly ash for making value-added ceramics is useful for the electrical sectors. Since waste materials are currently endangering our environment, ways of utilizing them have become a global challenge. Currently, R&D work is being carried out to utilize these materials for producing value-added products. This book details the investigations to utilize fly ash (FA) and pond ash (PA) - both waste materials from thermal power plants - with high-carbon ferrochrome (HCFC) slag (by-product of the ferrochrome industry), for producing a novel material for ceramics. Kaolin/K-feldspar is mixed with PA/HCFC slag to produce ceramics with the formation of mullite. The FA/PA/HCFC slag-based ceramics can replace porcelain-based ceramics, and some permanent ceramic structures can be constructed with such wastes. Properties and structures made with ceramics are found to be comparable with those made with porcelain-based ceramics. Performances of these materials above ambient temperature have been evaluated and results indicate the possible replacement of porcelain with these newly invented ceramics. Audience The book will be used by electrical and civil engineers in the electrical, construction, and ceramic industries as well as the industrial waste sector. Researchers in materials science, structural, civil and electrical engineering, environmental science, and ceramic engineering, will also have high interest.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Muktikanta Panigrahi, PhD, completed his doctorate in materials science, Indian Institute of Technology, Kharagpur. He is an assistant professor in the Department of Materials Science, Maharaja Sriram Chandra Bhanja Deo University, Odisha, India. He has completed a project on Geopolymer sponsored by the Ministry of Mines, Govt. of India. He has innovations/discoveries in the area of Geopolymer/MMCs/Ceramics/Polymers and is skilled in the field of basification of industrial wastes, organic semiconductors, biodegradable polymers and gas sensors. Ratan Indu Ganguly, PhD, completed his doctorate in materials science, Indian Institute of Technology, Kharagpur. He has 50 years of experience for academic teaching. He has completed an industry sponsored project for the development of floor and wall tiles from industrial waste such as fly ash. He is now supporting a research project which relates to development of geopolymer from pond ash. Radha Raman Dash, PhD, completed his doctorate in materials science, Indian Institute of Technology, Kharagpur. He spent decades at the CSIR-National Metallurgical Laboratory (NML), Jamshedpur as Senior Scientist. He now is Dean of research & development), Gandhi Institute of Engg. & Technology, University, Gunupur, Orissa. He has 10 inventions/discoveries and his research interests are in foundry, composite materials, corrosion, ceramic matrix composites, fractal images and advanced materials.