High Temperature Miniature Specimen Test Methods focuses on a comprehensive and thorough introduction to a range of high temperature, miniaturized test methods at elevated temperatures which are used to obtain "bulk? creep or fatigue properties from a small volume of material. The book will be of use to a wide range of audience of engineers (e.g., designers, manufacturers, metallurgists, stress analysts), researchers (e.g., materials scientists) and students (undergraduate and postgraduate) in the field of high-temperature material and structural integrity assessment. Specific novel features…mehr
High Temperature Miniature Specimen Test Methods focuses on a comprehensive and thorough introduction to a range of high temperature, miniaturized test methods at elevated temperatures which are used to obtain "bulk? creep or fatigue properties from a small volume of material. The book will be of use to a wide range of audience of engineers (e.g., designers, manufacturers, metallurgists, stress analysts), researchers (e.g., materials scientists) and students (undergraduate and postgraduate) in the field of high-temperature material and structural integrity assessment. Specific novel features include 1] theoretical basis of each method; 2], data interpretation method of each test, and 3] specific applications.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Wei Sun Ph.D DS.c was a Professor of Mechanical Engineering at the University of Nottingham, and has been working on creep, fatigue, cyclic plasticity, and the miniaturized specimen test methods at high temperatures for > 25 years. He has supervised 40 Ph.D projects (> 10 related to high temperature small specimen testing). He is an author of 260 international journal articles (63 related to high-temperature miniature specimen tests), 170 conference contributions (14 plenary/keynote lectures) and one textbook (Applied Creep Mechanics. McGraw-Hill 2013). He became Charted Engineer in 1998, a Fellow of The Institution of Mechanical Engineers in 2002, and a Fellow of The Institute of Materials in 2009. Prof. Sun has been an Emeritus Professor at the University of Nottingham since he retired in 2020, and currently is a member of EU CEN Impression Creep Standard Committe.
Inhaltsangabe
1. Outlines test types and data processing used to estimate the material constants 2. The most popular small punch test method, i.e. the small punch test 3. Introduces the impression creep test method using a rectangular indenter 4. Theoretical methods for data interpretation and typical test data are described 5. These include the miniature ring creep test methods 6. The miniature bar-type creep test method 7. Miniature bending creep tests 8. The more recently developed miniature thin-plate test creep and low cycle fatigue test methods 9. A specific topic related to the data interpretation is addressed in this chapter, in which the concept of the Equivalent Gauge Length (EGL) is introduced 10. The determination of material properties from the miniature specimen 11. Focuses on a specific application field on structural assessment of aero-engine gas turbine blades, where the assessment of anisotropy and lifing of service-aged gas turbine blades made of single-crystal nickel-based superalloy is particularly discussed 12. Briefly addresses several requirements for the future development of the miniaturized specimen test method, which is related to material property characterization, component assessment, size effect and multi-scale modelling, as well as standardization
1. Outlines test types and data processing used to estimate the material constants 2. The most popular small punch test method, i.e. the small punch test 3. Introduces the impression creep test method using a rectangular indenter 4. Theoretical methods for data interpretation and typical test data are described 5. These include the miniature ring creep test methods 6. The miniature bar-type creep test method 7. Miniature bending creep tests 8. The more recently developed miniature thin-plate test creep and low cycle fatigue test methods 9. A specific topic related to the data interpretation is addressed in this chapter, in which the concept of the Equivalent Gauge Length (EGL) is introduced 10. The determination of material properties from the miniature specimen 11. Focuses on a specific application field on structural assessment of aero-engine gas turbine blades, where the assessment of anisotropy and lifing of service-aged gas turbine blades made of single-crystal nickel-based superalloy is particularly discussed 12. Briefly addresses several requirements for the future development of the miniaturized specimen test method, which is related to material property characterization, component assessment, size effect and multi-scale modelling, as well as standardization
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497