Higher-dimensional category theory draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations, appealing to graduate students and researchers who wish to become acquainted with this modern branch of mathematics.
Higher-dimensional category theory draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations, appealing to graduate students and researchers who wish to become acquainted with this modern branch of mathematics.
Part I. Background: 1. Classical categorical structures 2. Classical operads and multicategories 3. Notions of monoidal category Part II. Operads. 4. Generalized operads and multicategories: basics 5. Example: fc-multicategories 6. Generalized operads and multicategories: further theory 7. Opetopes Part III. n-categories: 8. Globular operads 9. A definition of weak n-category 10. Other definitions of weak n-category Appendices: A. Symmetric structures B. Coherence for monoidal categories C. Special Cartesian monads D. Free multicategories E. Definitions of trees F. Free strict n-categories G. Initial operad-with-contraction.
Part I. Background: 1. Classical categorical structures 2. Classical operads and multicategories 3. Notions of monoidal category Part II. Operads. 4. Generalized operads and multicategories: basics 5. Example: fc-multicategories 6. Generalized operads and multicategories: further theory 7. Opetopes Part III. n-categories: 8. Globular operads 9. A definition of weak n-category 10. Other definitions of weak n-category Appendices: A. Symmetric structures B. Coherence for monoidal categories C. Special Cartesian monads D. Free multicategories E. Definitions of trees F. Free strict n-categories G. Initial operad-with-contraction.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826