Written by a Univeristy of Chicago professor, this 1st volume in the 3-volume series "History of the Theory of Numbers" presents the material related to the subjects of divisibility and primality. 1919 edition.
Written by a Univeristy of Chicago professor, this 1st volume in the 3-volume series "History of the Theory of Numbers" presents the material related to the subjects of divisibility and primality. 1919 edition.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Leonard Eugene Dickson taught at the University of Chicago.
Inhaltsangabe
I. Perfect multiply perfect and amicable numbers II. Formulas for the number and sum of divisors problems of Fermat and Wallis III. Fermat's and Wilson's theorems generalizations and converses; symmetric functions of 1 2 ... p-1 modulo p IV Residue of (up-1-1)/p modulo p V. Euler's function generalizations; Farey series VI. Periodic decimal fractions; periodic fractions; factors of 10n VII. Primitive roots exponents indices binomial congruences VIII. Higher congruences IX. Divisibility of factorials and multinomial coefficients X. Sum and number of divisors XI. Miscellaneous theorems on divisibility greatest common divisor least common multiple XII. Criteria for divisibility by a given number XIII. Factor tables lists of primes XIV. Methods of factoring XV. Fermat numbers XVI. Factors of an+bn XVII. Recurring series; Lucas' un vn XVIII. Theory of prime numbers XIX. Inversion of functions; Möbius' function; numerical integrals and derivatives XX. Properties of the digits of numbers Indexes
I. Perfect multiply perfect and amicable numbers II. Formulas for the number and sum of divisors problems of Fermat and Wallis III. Fermat's and Wilson's theorems generalizations and converses; symmetric functions of 1 2 ... p-1 modulo p IV Residue of (up-1-1)/p modulo p V. Euler's function generalizations; Farey series VI. Periodic decimal fractions; periodic fractions; factors of 10n VII. Primitive roots exponents indices binomial congruences VIII. Higher congruences IX. Divisibility of factorials and multinomial coefficients X. Sum and number of divisors XI. Miscellaneous theorems on divisibility greatest common divisor least common multiple XII. Criteria for divisibility by a given number XIII. Factor tables lists of primes XIV. Methods of factoring XV. Fermat numbers XVI. Factors of an+bn XVII. Recurring series; Lucas' un vn XVIII. Theory of prime numbers XIX. Inversion of functions; Möbius' function; numerical integrals and derivatives XX. Properties of the digits of numbers Indexes
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497