107,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
54 °P sammeln
  • Gebundenes Buch

This is a modern introduction to Kaehlerian geometry and Hodge structure. It starts with basic material on complex variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory, the latter being treated in a more theoretical way than is usual in geometry. The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions. The book is is completely self-contained…mehr

Produktbeschreibung
This is a modern introduction to Kaehlerian geometry and Hodge structure. It starts with basic material on complex variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory, the latter being treated in a more theoretical way than is usual in geometry. The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions. The book is is completely self-contained and can be used by students, while its content gives an up-to-date account of Hodge theory and complex algebraic geometry as has been developed by P. Griffiths and his school, by P. Deligne, and by S. Bloch. The text is complemented by exercises which provide useful results in complex algebraic geometry.

Table of contents:
Introduction; Part I. Preliminaries: 1. Holomorphic functions of many variables; 2. Complex manifolds; 3. Kähler metrics; 4. Sheaves and cohomology; Part II. The Hodge Decomposition: 5. Harmonic forms and cohomology; 6. The case of Kähler manifolds; 7. Hodge structures and polarisations; 8. Holomorphic de Rham complexes; Part III. Variations of Hodge Structure: 9. Families and deformations; 10. Variations of Hodge structure; Part IV. Cycles and Cycle Classes: 11. Hodge classes; 12. The Abel-Jacobi map; Bibliography; Index.

This is a completely self-contained modern introduction to Kaehlerian geometry and Hodge structure. The author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. Aimed at students, the text is complemented by exercises which provide useful results in complex algebraic geometry.

A completely self-contained modern introduction to Kaehlerian geometry and Hodge structure written for students.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Claire Voisin is a Professor at the Institut des Hautes Études Scientifiques, France