110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

This book discusses in detail the science and morphology of powerful hurricane detection systems. It broadly addresses new approaches to monitoring hazards using freely available images from the European Space Agency's (ESA's) Sentinel-1 SAR satellite and benchmarks a new interdisciplinary field at the interface between oceanography, meteorology and remote sensing. Following the launch of the first European Space Agency (ESA) operational synthetic aperture radar satellite, Sentinel-1, in 2014, synthetic aperture radar (SAR) data has been freely available on the Internet hub in real-time. This…mehr

Produktbeschreibung
This book discusses in detail the science and morphology of powerful hurricane detection systems. It broadly addresses new approaches to monitoring hazards using freely available images from the European Space Agency's (ESA's) Sentinel-1 SAR satellite and benchmarks a new interdisciplinary field at the interface between oceanography, meteorology and remote sensing. Following the launch of the first European Space Agency (ESA) operational synthetic aperture radar satellite, Sentinel-1, in 2014, synthetic aperture radar (SAR) data has been freely available on the Internet hub in real-time. This advance allows weather forecasters to view hurricanes in fine detail for the first time. As a result, the number of synthetic aperture radar research scientists working in this field is set to grow exponentially in the next decade; the book is a valuable resource for this large and budding audience.
Autorenporträt
Professor Xiaofeng Li has been with the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS), College Park, MD, USA since 1997. His research interests include remote sensing observation and theoretical/numerical model studies of various types of oceanic and atmospheric phenomena, image processing, ocean surface oil spill and target detection with multipolarization SAR, and sea surface temperature algorithms development. He is also involved in developing many operational satellite ocean remote sensing products at NESDIS. Prof. Li also serves as the vice Chair: Washington Chapter of IEEE/Geoscience and Remote Sensing SocietyHe is a senior Member of IEEE Geoscience and Remote Sensing society and IEEE Oceanic Engineering society, a member of American Geophysical Union (AGU) and American Meteorological Society (AMS). He also serves as Editors for several international journals, e.g. International Journal of Remote Sensing, International Journal of Digital Earth. He is also invited as guest professor at three universities in the US and 10 institutions in China.